Vol. 72
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-03-20
Application of Microwave Integrators for Interference Suppression
By
Progress In Electromagnetics Research C, Vol. 72, 123-132, 2017
Abstract
In this study, a trapezoidal-rule integrator and inverting a differentiator are employed to form the transfer function of an approaching integrator in the Z domain. The integrator was implemented to verify the feasibility of the technique, and the integrator exhibited an operating frequency of 1.45 to 6 GHz. Adding microwave integrators to a receiver's radio frequency (RF) circuits in a communication link improves the signal-to-noise ratio (SNR). As a result, an experimental environment was constructed in a wireless local area network (WLAN) band (2400 to 2483.5 MHz). In addition, the RF transmitter emitted the main signal at 2.45 GHz, which included the high-frequency interfering signals at 3.5, 4.5, and 5.5 GHz. The integrators and low-pass filters were implemented to perform signal analysis of the RF signals. To compare the interference suppression of the integrators with the interference suppression of the original and low-pass filters, the receiving power of the main signal and the interfering signals from the different frequencies in the end of the receiver were analyzed. The experimental results indicated that inserting integrators into RF circuits improved the SNR of the communication link by up to 10 dB.
Citation
Lin-Chuan Tsai, "Application of Microwave Integrators for Interference Suppression," Progress In Electromagnetics Research C, Vol. 72, 123-132, 2017.
doi:10.2528/PIERC16112505
References

1. He, J., G. Gu, and Z. Wu, "MMSE interference suppression in MIMO frequency selective and timevarying fading channels," IEEE Trans. Signal Processing, Vol. 56, No. 8, 3638-3651, Aug. 2008.
doi:10.1109/TSP.2008.919389

2. Sun, Y. and T. Pratt, "Narrowband PLC SIMO-based interference suppression with zero-forcing," IEEE Power Deliv., Vol. 28, No. 4, 2022-2029, Apr. 2013.
doi:10.1109/TPWRD.2013.2262576

3. Gupta, A. S. and A. Singer, "Interference suppression for memoryless nonlinear multiuser systems using constellation structure," IEEE Trans. Signal Processing, Vol. 56, No. 11, 5589-5604, Nov. 2008.
doi:10.1109/TSP.2008.926976

4. Zhou, H. and B. Wen, "Radio frequency interference suppression in small-aperture high-frequency radars," IEEE Geo. Remote Sensing Lett., Vol. 9, No. 4, 788-792, Apr. 2012.
doi:10.1109/LGRS.2011.2181817

5. Perez-Solano, J. J., S. Felici-Castell, and M. A. Rodriguez-Hernandez, "Narrowband interference suppression in frequency-hopping spread spectrum using undecimated wavelet packet transform," IEEE Trans. Vehicular Tech., Vol. 57, No. 3, 1620-1629, Mar. 2008.
doi:10.1109/TVT.2007.909306

6. Talmon, R., I. Cohen, and S. Gannot, "Single-channel transient interference suppression with diffusion maps," IEEE Trans. Audio, Speech, and Language Processing, Vol. 21, No. 1, 132-144, Jan. 2013.
doi:10.1109/TASL.2012.2215593

7. Bottomley, G. E., "CDMA downlink interference suppression using I/Q projection," IEEE Trans. Wireless Comm., Vol. 2, No. 5, 890-900, May 2003.
doi:10.1109/TWC.2003.817434

8. Clarke, P. and R. C. de Lamare, "Low-complexity reduced-rank linear interference suppression based on set-membership joint iterative optimization for DS-CDMA systems," IEEE Trans. Vehicular Tech., Vol. 60, No. 9, 4324-4337, Sept. 2011.
doi:10.1109/TVT.2011.2171376

9. De Lamare, R. C. and P. S. R. Diniz, "Blind adaptive interference suppression based on setmembership constrained constant-modulus algorithms with dynamic bounds," IEEE Trans. Signal Processing, Vol. 61, No. 5, 1288-1301, May 2013.
doi:10.1109/TSP.2012.2229995

10. Hombs, B. and J. S. Lehnert, "Multiple-access interference suppression for MC-CDMA by frequency-domain oversampling," IEEE Trans. Comm., Vol. 53, No. 4, 677-686, Apr. 2005.
doi:10.1109/TCOMM.2005.844964

11. Glisic, S. G., Z. B. Nikolic, B. Dimitrijevic, and G. K. Woodward, "Multilayer LMS interference suppression algorithms for CDMA wireless network," IEEE Trans. Comm., Vol. 48, No. 8, 1413-1422, Aug. 2000.
doi:10.1109/26.864178

12. Al-Alaoui, M. A., "Novel IIR differentiator from the Simpson rule," IEEE Trans. Circuits Systems — I, Vol. 41, No. 2, 186-187, Feb. 1994.
doi:10.1109/81.269060

13. Tseng, C.-C., "Design of fractional order digital FIR differentiators," IEEE Signal Processing Letters, Vol. 8, No. 3, 77-79, Mar. 2001.
doi:10.1109/97.905945

14. Kumar, B. and S. C. Dutta-Roy, "Design of digital differentiators for low-frequencies," Proc. IEEE, Vol. 76, No. 3, 287-289, Mar. 1988.
doi:10.1109/5.4408

15. Pei, S. C. and J. J. Shyu, "Analytic closed form matrix for designing high order digital differentiators using eigenapproach," IEEE Trans. Signal Processing, Vol. 44, No. 3, 698-701, Mar. 1996.
doi:10.1109/78.489042

16. Al-Alaoui, M. A., "A class of second-order integrators and low-pass differentiators," IEEE Trans. Circuits Systems — I, Vol. 42, No. 4, 220-223, Apr. 1995.
doi:10.1109/81.382477

17. Hsue, C.-W., L.-C. Tsai, and K.-L. Chen, "Implementation of first-order and second-order microwave differentiators," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 5, 1443-1448, May 2004.
doi:10.1109/TMTT.2004.827015

18. Oppenheim, A. V. and R. W. Schafer, Discrete-time Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1998.

19. Tsai, L. C. and C. W. Hsue, "Dualband bandpass filter using equal length coupled serial shunted lines and Z-domain technique," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1111-1117, Apr. 2004.
doi:10.1109/TMTT.2004.825680

20. Chang, D.-C. and C.-W. Hsue, "Design and implementation of filters using transfer functions in the Z domain," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 5, 979-985, May 2001.
doi:10.1109/22.920157

21. Chang, D.-C. and C.-W. Hsue, "Wide-band equal-ripple filters in nonuniform transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 4, 1114-1119, Apr. 2002.
doi:10.1109/22.993414

22. Loyka, S. and A. Kouki, "Using two ray multipath model for microwave link budget analysis," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 31-36, Oct. 2001.
doi:10.1109/74.979365

23. Parsons, J. D., The Mobile Radio Propagation Channel, 2nd Ed., Wiley, New York, 2000.
doi:10.1002/0470841524