Vol. 71
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-02-20
Printed Meander Line MIMO Antenna Integrated with Air Gap, DGS and RIS: a Low Mutual Coupling Design for LTE Applications
By
Progress In Electromagnetics Research C, Vol. 71, 149-159, 2017
Abstract
Multiple-input and multiple-output (MIMO) is currently regarded as a key technology for long term evolution (LTE), but a critical effect is mutual coupling (S21) due to space constraint in miniaturized design. A compact-size antenna with low mutual coupling will be an ideal choice for better system performance. This paper describes the design of a small-size (48 × 48 mm2) MIMO antenna system with low mutual coupling for LTE 800 MHz applications. The antenna system comprises two FR-4 substrate layers; one printed with two meander line antennas (MLAs) and the other printed with reactive impedance surface (RIS) and defected ground structure (DGS). The properties of the antenna, such as S-Parameters, excited surface current distribution, far-field radiation pattern and diversity performance characteristics, were studied. The results indicated that MLAs rendered compactness to the system. Introduction of air gap (AG) between the two substrates, DGS and periodic square patches of RIS resulted in 452 MHz bandwidth and mutual coupling of -41.18 dB between antenna elements. The performance of the proposed design compared with other reported geometry has been demonstrated. Parameters including bandwidth, ratio of antenna area/improvement in S21, antenna efficiency and the envelope correlation coefficient were compared. Considering the results, the present system appears to be comparatively more efficient.
Citation
Shahanawaz Kamal, and Anjali Ashish Chaudhari, "Printed Meander Line MIMO Antenna Integrated with Air Gap, DGS and RIS: a Low Mutual Coupling Design for LTE Applications," Progress In Electromagnetics Research C, Vol. 71, 149-159, 2017.
doi:10.2528/PIERC16112008
References

1. Garg, V. K., Wireless Communications and Networks, Morgan Kaufmann Publishers, Elsevier, 2007.

2. Larmo, A., M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, and H. Wiemann, "The LTE linklayer design," IEEE Communications Magazine, Vol. 47, No. 4, 52-59, Apr. 2009.
doi:10.1109/MCOM.2009.4907407

3. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, 311-335, Mar. 1998.
doi:10.1023/A:1008889222784

4. Telatar, E., "Capacity of multi-antenna Gaussian channels," European Transactions on Telecommunications, Vol. 10, No. 6, 585-595, Nov. 1999.
doi:10.1002/ett.4460100604

5. Ludwig, A., "Mutual coupling, gain and directivity of an array of two identical antennas," IEEE Transactions on Antennas and Propagation, Vol. 24, No. 6, 837-841, Nov. 1976.
doi:10.1109/TAP.1976.1141440

6. Lau, B. K. and Z. Ying, "Antenna design challenges and solutions for compact MIMO terminals," IEEE International Workshop on Antenna Technology (iWAT), 70-73, Apr. 2011.

7. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 389-391, Apr. 2012.
doi:10.1109/LAWP.2012.2193111

8. Lee, C. H., S. Y. Chen, and P. Hsu, "Integrated dual planar inverted-F antenna with enhanced isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 963-965, Aug. 2009.

9. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, Sep. 2010.
doi:10.1109/LAWP.2010.2074175

10. Cheng, C., F. Zhang, Y. Wan, and F. Zhang, "Miniaturized high-isolation dual-frequency orthogonally polarized patch antenna using compact electromagnetic bandgap filters," International Journal of Antennas and Propagation, Apr. 2014.

11. Chen, S. C., Y. S. Wang, and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3650-3658, Dec. 2008.
doi:10.1109/TAP.2008.2005469

12. Zhao, L., L. K. Yeung, and K. L. Wu, "A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2767-2778, May 2014.
doi:10.1109/TAP.2014.2308547

13. Ghosh, J., S. Ghosal, D. Mitra, and S. R. Bhadra Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202

14. Ray, K. P., S. Ghosh, and K. Nirmala, "Multilayer multiresonator circular microstrip antennas for broadband and dual-band operations," Microwave and Optical Technology Letters, Vol. 47, 489-494, Dec. 2005.
doi:10.1002/mop.21208

15. Guha, D. and J. Y. Siddiqui, "Resonant frequency of equilateral triangular microstrip antenna with and without air gap," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2174-2178, Aug. 2004.
doi:10.1109/TAP.2004.832504

16. Li, L., Y. Yu, and L. Yi, "Mutual coupling reduction between printed dual-frequency antenna arrays," Progress In Electromagnetics Research Letters, Vol. 59, 63-69, 2016.
doi:10.2528/PIERL16020601

17. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory Techniques, Vol. 47, 2059-2074, Nov. 1999.

18. Yeo, J. and R. Mittra, "Bandwidth enhancement of multiband antennas using frequency selective surfaces for ground planes," IEEE International Symposium on Antennas and Propagation Society, Vol. 4, 366-369, Jul. 2001.

19. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Communications Magazine, Vol. 52, No. 9, 2403-2414, Sep. 2004.

20. Marrocco, G., "Gain-optimized self-resonant meander line antennas for RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 302-305, Jan. 2003.
doi:10.1109/LAWP.2003.822198

21., 3GPP TS 36.101, V8.3.0, EUTRA User Equipment Radio Transmission and Reception, 2008.

22. Li, H., J. Xiong, and S. He, "A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1107-1110, Oct. 2009.

23. Min, K. S., D. J. Kim, and Y. M. Moon, "Improved MIMO antenna by mutual coupling suppression between elements," The European Conference on Wireless Technology, 125-128, Paris, France, Oct. 2005.

24., ANSYS HFSS ver. 13.0.0, ANSYS, Canonsburg, PA, USA, 2011, [online], available: http://www.ansys.com.

25. Ghosh, S., T. N. Tran, and T. Le-Ngoc, "Miniaturized four-element diversity PIFA," IEEE Antennas Wireless Propagation Letters, Vol. 12, 396-400, Mar. 2013.
doi:10.1109/LAWP.2013.2251856

26., CST Microwave Studio, [online], available: http://www.cst.com.

27. Karaboikis, M. P., V. C. Papamichael, G. F. Tsachtsiris, C. F. Soras, and V. T.Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2067-2078, Jul. 2008.
doi:10.1109/TAP.2008.924677

28. Taga, T., "Analysis for mean effective gain of mobile antennas in land mobile radio environments," IEEE Transactions on Vehicular Technology, Vol. 39, 117-131, May 1990.
doi:10.1109/25.54228

29. Taga, T., "Analysis of correlation characteristics of antenna diversity in land mobile radio environments," Electronics and Communications in Japan, Part I, Vol. 74, No. 8, 101-116, 1991.
doi:10.1002/ecja.4410740810

30. Schwartz, M., W. R. Bennett, and S. Stein, Communication System and Techniques, 470-474, McGraw-Hill, New York, 1965.

31. Pierce, J. N. and S. Stein, "Multiple diversity with non independent fading," Proceedings of the IRE, Vol. 48, 89-104, Jan. 1960.
doi:10.1109/JRPROC.1960.287384

32. Rao, Q. and K. Wilson, "Design, modeling and evaluation of a multiband MIMO/diversity antenna system for small wireless mobile terminals," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, 410-419, Mar. 2011.
doi:10.1109/TCPMT.2010.2101234

33. Zhang, S., A. A. Glazunov, Z. Ying, and S. He, "Reduction of the envelope correlation coefficient with improved total efficiency for mobile LTE MIMO antenna arrays: Mutual scattering mode," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3280-3291, Jun. 2013.
doi:10.1109/TAP.2013.2248071

34. Lee, B., F. J. Harackiewicz, and H. Wi, "Closely mounted mobile handset MIMO antenna for LTE13 band application," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 411-414, Feb. 2014.

35. Yetisir, E., C. C. Chen, and J. L. Volakis, "Low profile UWB 2-port antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 55-58, 2014.
doi:10.1109/LAWP.2013.2296045