Vol. 70
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-01-05
Design of Short-Length Polarization Beam Splitter Based on Highly Birefringent Dual-Core Photonic Crystal Fiber
By
Progress In Electromagnetics Research C, Vol. 70, 123-133, 2016
Abstract
We propose an all circular-air-hole short-length polarization beam splitter (PBS) with high extinction ratio based on dual-core highly birefringent photonic crystal fiber (PCF). The impacts of geometrical parameters on the coupling polarization dependence, coupling length ratio (CLR), and propagation property are numerically investigated by the full-vector finite element method (FEM) and the semi-vector beam propagation method (BPM). From simulation results, it is seen that CLRs at the excitation wavelength of 1.55 μm can be optimized to be closed to the desired values of 3/2 and 4/3 to satisfy the sufficient condition of splitting polarized modes by appropriately tailoring the air-hole sizes. For the two optimal structures, the separation of x- and y-polarized modes can be achieved in short lengths of 1.41 mm and 2.89 mm at the operating wavelength of 1.55 μm, respectively. Furthermore, the extinction ratios at λ = 1.55 μm are estimated to be 97.7 dB and 88.1 dB, and the wavelength bandwidths of extinction ratio better than 15 dB are about 107 and 82 nm, respectively.
Citation
Zhenpeng Wang, Fei Yu, Zhuo Wang, and Huimin Liu, "Design of Short-Length Polarization Beam Splitter Based on Highly Birefringent Dual-Core Photonic Crystal Fiber," Progress In Electromagnetics Research C, Vol. 70, 123-133, 2016.
doi:10.2528/PIERC16112007
References

1. Peng, G., T. Tjugiarto, and P. Chu, "Polarisation beam splitting using twin-elliptic-core optical fibres," Electron. Lett., Vol. 26, No. 10, 682-683, 1990.
doi:10.1049/el:19900446

2. Hayakawa, T., S. Asakawa, and Y. Kokubun, "ARROW-B type polarization splitter with asymmetric Y-branch fabricated by a self-alignment process," J. Lightwave Technol., Vol. 15, No. 7, 1165-1170, 1997.
doi:10.1109/50.596962

3. Wu, C., T. Wu, and H. Chang, "A novel fabrication method for all-fiber, weakly fused, polarization beam splitters," IEEE Photonic. Tech. L., Vol. 7, No. 7, 786-788, 1995.
doi:10.1109/68.393184

4. Van der Tol, J. J. G. M., J. W. Pedersen, E. G. Metaal, and Y. S. Oei, "Mode evolution type polarization splitter on InGaAsP/InP," IEEE Photonic. Tech. L., Vol. 5, No. 12, 1412-1414, 1993.
doi:10.1109/68.262558

5. Miliou, A. N., R. Srivastava, and R. V. Ramaswamy, "A 1.3 μm directional coupler polarization splitter by ion exchange," J. Lightwave Technol., Vol. 11, No. 2, 220-225, 1993.
doi:10.1109/50.212530

6. Bricheno, T. and V. Baker, "All-fibre polarisation splitter/combiner," Electron. Lett., Vol. 21, No. 6, 251-252, 1985.
doi:10.1049/el:19850179

7. Chen, D., M.-L. V. Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701

8. Zheng, H. and C. Wu, "Photonic crystal fiber with two triangular arrays of semiminor-axisdecreasing elliptical air holes for single-polarization single-mode operation," Opt. Eng., Vol. 50, No. 12, 125003, 2011.
doi:10.1117/1.3657815

9. Yin, A. and L. Xiong, "Characteristics analysis of large solid-core square-lattice photonic crystal fibers with hybrid cladding," Opt. Eng., Vol. 53, No. 1, 016112, 2014.
doi:10.1117/1.OE.53.1.016112

10. Hasana, M. I., M. Selim Habibb, M. Samiul Habibb, and S. M. Abdur Razzakb, "Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber," Opt. Fiber Technol., Vol. 20, No. 1, 32-38, 2014.
doi:10.1016/j.yofte.2013.11.005

11. Mangan, B. J., J. C. Knight, T. A. Birks, and P. S. J. Russell, "Experimental study of dual-core photonic crystal fibre," Electron. Lett., Vol. 36, No. 16, 1358, 2000.
doi:10.1049/el:20000979

12. Kakarantzas, G., B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Directional coupling in a twin core photonic crystal fiber using heat treatment," Quantum Electronics and Laser Science Conference, 7219405, 2001.

13. Lee, B. H., J. B. Eom, J. Kim, D. S. Moon, and U. C. Paek, "Photonic crystal fiber coupler," Opt. Lett., Vol. 27, No. 10, 812-814, 2002.
doi:10.1364/OL.27.000812

14. Zhang, L. and C. Yang, "Polarization splitter based on photonic crystal fibers," Opt. Express,, Vol. 11, No. 9, 1015, 2003.
doi:10.1364/OE.11.001015

15. Zhang, L. and C. Yang, "Polarization-dependent coupling in twin-core photonic crystal fibers," J. Lightwave Technol., Vol. 22, No. 5, 1367-1373, 2004.
doi:10.1109/JLT.2004.825356

16. Zhang, L., C. Yang, C. Yu, T. Luo, and A. E. Willner, "PCF-based polarization splitters with simplified structures," J. Lightwave Technol., Vol. 23, No. 11, 3558-3565, 2005.
doi:10.1109/JLT.2005.857779

17. Saitoh, K., Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express, Vol. 11, No. 24, 3188-3195, 2003.
doi:10.1364/OE.11.003188

18. Saitoh, K., Y. Sato, and M. Koshiba, "Polarization splitter in three-core photonic crystal fibers," Opt. Express, Vol. 12, No. 17, 3940-3946, 2004.
doi:10.1364/OPEX.12.003940

19. Birks, T. A., J. C. Knight, B. J. Mangan, and P. St. J. Russel, "Seeing things in a hole new light-photonic crystal fibers," Proc. SPIE, 4532, 206-219, 2001.

20. Mao, D., C. Guan, and L. Yuan, "Polarization splitter based on interference effects in all-solid photonic crystal fibers," Appl. Optics, Vol. 49, No. 19, 3748-3752, 2010.
doi:10.1364/AO.49.003748

21. Chen, M., B. Sun, Y. Zhang, and X. Fu, "Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber," Appl. Optics, Vol. 49, No. 16, 3042-3048, 2010.
doi:10.1364/AO.49.003042

22. Zhang, L. and C. Yang, "A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores," IEEE Photonic. Tech. L., Vol. 36, No. 7, 1670-1672, 2004.
doi:10.1109/LPT.2004.828850

23. Rosa, L., F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, "Polarization splitter based on a squarelattice photonic-crystal fiber," Opt. Lett., Vol. 31, No. 4, 441-443, 2006.
doi:10.1364/OL.31.000441

24. Florous, N., K. Saitoh, and M. Koshiba, "A novel approach for designing photonic crystal fiber splitters with polarization independent propagation characteristics," Opt. Express, Vol. 13, No. 19, 7365-7373, 2005.
doi:10.1364/OPEX.13.007365

25. Lu, W., S. Lou, and X. Wang, "Ultrabroadband polarization splitter based on a modified three-core photonic crystal fiber," Appl. Optics, Vol. 52, No. 35, 8494-8500, 2013.
doi:10.1364/AO.52.008494

26. Lu, W., S. Lou, X. Wang, L. Wang, and R. Feng, "Ultrabroadband polarization splitter based on three-core photonic crystal fibers," Appl. Optics, Vol. 52, No. 3, 449-455, 2013.
doi:10.1364/AO.52.000449

27. Jiang, H., E. Wang, J. Zhang, L. Hu, Q. Mao, Q. Li, and K. Xie, "Polarization splitter based on dual-core photonic crystal fiber," Opt. Express, Vol. 22, No. 25, 30461-30466, 2014.
doi:10.1364/OE.22.030461

28. Liu, Q., S. Li, Z. Fan, W. Zhang, J. Zi, and H. Li, "Numerical analysis of high extinction ratio photonic crystal fiber polarization splitter based on ZnTe glass," Opt. Fiber Technol., Vol. 21, 193-197, 2015.
doi:10.1016/j.yofte.2014.11.001

29. Wang, X., S. Li, H. Chen, G.Wang, and Y. Zhao, "Polarization splitter based on dual-core photonic crystal fiber with octagonal lattice," Opt. Quant. Electron., Vol. 48, No. 4, 271, 2016.
doi:10.1007/s11082-016-0545-7

30. Wang, H., X. Yan, S. Li, G. An, and X. Zhang, "Ultra-short polarization beam splitter based on dual core photonic crystal fiber," J. Mod. Optic., Online, 2016.

31. Kim, S. E., B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. Kee, "Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion," Opt. Express, Vol. 20, No. 2, 1385-1391, 2012.
doi:10.1364/OE.20.001385

32. Li, J., K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, "Design of a single-polarization single-mode photonic crystal fiber double-core coupler," Optik, Vol. 120, 490-496, 2009.
doi:10.1016/j.ijleo.2007.12.002

33. Zhang, S., W. Zhang, P. Geng, X. Li, and J. Ruan, "Design of single-polarization wavelength splitter based on photonic crystal fiber," Appl. Optics, Vol. 50, No. 36, 490-496, 2011.
doi:10.1364/AO.50.006576

34. Saitoh, K. and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol., Vol. 23, No. 11, 3580-3590, 2005.
doi:10.1109/JLT.2005.855855

35. Rahman, B. M. A., A. K. M. Saiful Kabir, M. Rajarajan, and K. T. V. Grattan, "Finite element modal solutions of planar photonic crystal fibers with rectangular air-holes," Opt. Quant. Electron., Vol. 37, 171-183, 2005.
doi:10.1007/s11082-005-1134-3

36. Laegsgaard, J., O. Bang, and A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett., Vol. 29, No. 12, 2473-2475, 2004.
doi:10.1364/OL.29.002473