Vol. 70
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-01-05
CSRR Inspired Conductor Backed CPW-Fed Monopole Antenna for Multiband Operation
By
Progress In Electromagnetics Research C, Vol. 70, 135-143, 2016
Abstract
A conductor backed coplanar waveguide (CPW) fed multiband antenna is presented. The shorting of ground in CPW feed and conductor backed arrangement extend the area of ground plane. The proposed antenna consists of rectangular monopole with Complementary Split Ring Resonator (CSRR) engraved in the extended ground plane. The prototype antenna is designed, fabricated and measured. CSRR characteristics are also analyzed. Simulated and measured results of the antenna are in good agreement with each other and are discussed. The proposed antenna can be used for WiMAX, WLAN and RADAR applications at 3.4 GHz, 5.16 GHz and 9.5 GHz, respectively.
Citation
Rajasekar Boopathi Rani, and Shashi Krishna Pandey, "CSRR Inspired Conductor Backed CPW-Fed Monopole Antenna for Multiband Operation," Progress In Electromagnetics Research C, Vol. 70, 135-143, 2016.
doi:10.2528/PIERC16102801
References

1. Kuo, Y. L. and K. L. Wong, "Printed double-T monopole antenna for 2.4/5.2GHz dual-band WLAN operations," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2187-2192, 2003, doi: 10.1109/TAP.2003.816391.
doi:10.1109/TAP.2003.816391

2. Mishra, S. K., R. K. Gupta, A. Vaidya, and J. Mukherjee, "A compact dual-band fork-shaped monopole antenna for bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 627-630, 2011, doi: 10.1109/LAWP.2011.2159572.
doi:10.1109/LAWP.2011.2159572

3. Sujith, R., V. Deepu, S. Mridula, B. Paul, D. Laila, and P. Mohanan, "Compact CPW-fed uniplanar antenna for multiband wireless applications," AEU-International Journal of Electronics and Communications, Vol. 65, No. 6, 553-559, 2011, doi: 10.1016/j.aeue.2010.09.006.
doi:10.1016/j.aeue.2010.09.006

4. Kunwar, A. and A. K. Gautam, "Fork-shaped planar antenna for Bluetooth, WLAN, and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 8, 1-6, 2016, doi:10.1017/S1759078716000647.

5. Ahmad, M. S. and C. Y. Kim, "Dual-element PIFA design with dual shorting pins for multiband communication devices," International Journal of Antennas and Propagation, 1-8, 2015, doi:10.1155/2015/742352.
doi:10.1155/2015/742352

6. Singh, A. K. and M. K. Meshram, "Shorting pin loaded dual-band compact rectangular microstrip antenna," International Journal of Electronics, Vol. 94, No. 3, 237-250, 2007, doi:10.1080/00207210601108166.
doi:10.1080/00207210601108166

7. Wong, K. L., L. C. Chou, and C. M. Su, "Dual-band flat-plate antenna with a shorted parasitic element for laptop applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 539-544, 2005, doi: 10.1109/TAP.2004.838754.
doi:10.1109/TAP.2004.838754

8. Ansal, K. A and T. Shanmuganantham, "Compact ACS-fed antenna with DGS and DMS for WiMAX/WLAN applications," International Journal of Microwave and Wireless Technologies, Vol. 7, 1-6, 2015, doi: 10.1017/S1759078715000537.
doi:10.1017/S1759078714000476

9. Boopathi Rani, R. and S. K. Pandey, "A parasitic hexagonal patch antenna surrounded by same shaped slot for WLAN, UWB applications with notch at VANET frequency band," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2996-3000, 2016, doi: 10.1002/mop.30204.
doi:10.1002/mop.30204

10. Singh, A. and S. Singh, "Design and optimization of a modified Sierpinski fractal antenna for broadband applications," Applied Soft Computing, Vol. 38, 843-850, 2016, doi:10.1016/j.asoc.2015.10.013.
doi:10.1016/j.asoc.2015.10.013

11. Ghatak, R., S. K. Ghoshal, D. Mondal, and A. K. Bhattacharjee, "A dual wideband Sierpinski carpet fractal-shaped planar monopole antenna with CPW feed," International Journal of Microwave and Wireless Technologies, Vol. 3, 77-79, 2011, doi: 10.1017/S1759078711000055.
doi:10.1017/S1759078711000055

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ,", Vol. 10, No. 4, 509-514, 1968, doi:10.1070/PU1968v010n04ABEH003699.

13. Pendry, J. B., A. J. Holden, and D. J. Robbins W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999, doi: 10.1109/22.798002.
doi:10.1109/22.798002

14. Kim, T. G. and B. Lee, "Metamaterial-based compact zeroth-order resonant antenna," Electronics Letters, Vol. 45, No. 1, 12-13, 2009, doi: 10.1049/el:20092715.
doi:10.1049/el:20092715

15. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired techniques," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012, doi: 10.1109/TAP.2012.2189699.
doi:10.1109/TAP.2012.2189699

16. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013, doi: 10.1109/TAP.2013.2263214.
doi:10.1109/TAP.2013.2263214

17. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

18. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015, doi:10.1002/mop.28835.
doi:10.1002/mop.28835

19. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

20. Anila, P. V., K. K. Indhu, C. M. Nijas, R. Sujith, S. Mridula, and P. Mohanan, "A planar compact metamaterial-inspired broadband antenna," Microwave and Optical Technology Letters, Vol. 56, No. 3, 610-613, 2014, doi:10.1002/mop.28175.
doi:10.1002/mop.28175

21. Zhu, J. and G. V. Eleftheriades, "A compact transmission-line metamaterial antenna with extended bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 295-298, 2009, doi:10.1109/LAWP.2008.2010722.

22. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenn with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014, doi: 10.1002/mop.28602.
doi:10.1002/mop.28602

23. Mishra, G. and S. Sahu, "Compact circular patch UWB antenna with WLAN band notch characteristics," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1068-1073, 2016, doi:10.1002/mop.29727.
doi:10.1002/mop.29727

24. Patel, S. K. and Y. Kosta, "Investigation on radiation improvement of corner truncated square microstrip patch antenna with double negative material," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 7, 819-833, 2013, doi: 10.1080/09205071.2013.789407.
doi:10.1080/09205071.2013.789407

25. Naoui, S., L. Latrach, and A. Gharsallah, "Metamaterials microstrip patch antenna for wireless communication RFID Technology," Microwave and Optical Technology Letters, Vol. 57, No. 5, 1060-1066, 2015, doi: 10.1002/mop.29016.
doi:10.1002/mop.29016

26. Yan, S. and G. A. E. Vandenbosch, "Meta-loaded circular sector patch antenna," Progress In Electromagnetics Research, Vol. 156, 37-46, 2016.

27. Herraiz-Martinez, F. J., G. Zamora, F. Paredes, F. Martin, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1528-1531, 2011, doi: 10.1109/LAWP.2011.2181309.
doi:10.1109/LAWP.2011.2181309

28. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2413-2418, 2015, doi: 10.1002/mop.29352.
doi:10.1002/mop.29352

29. Mehdipour, A., T. A. Denidni, and A. R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 555-562, 2014, doi: 10.1109/TAP.2013.2290791.
doi:10.1109/TAP.2013.2290791

30. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001, ISBN-13: 978-0890065136.

31. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002, ISBN-13: 978-0471417173.
doi:10.1002/0471221112

32. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., Wiley, New York, USA, 2005, ISBN-13: 978-0471667827.

33. Hwang, J. N. and F. C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3763-3770, 2006, doi:10.1109/TAP.2006.886501.
doi:10.1109/TAP.2006.886501

34. Baena, J. D., J. Bonache, F. Martn, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garca, I. Gil, M F. Portillo, and M. Soro, "Equivalent-circuit models for splitring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005, doi:10.1109/TMTT.2005.845211.
doi:10.1109/TMTT.2005.845211

35. Falcone, F., T. Lopetegi, J. D. Baena, R. Marqus, F. Martn, and M. Sorolla, "Effective negative- stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004, doi:10.1109/LMWC.2004.828029.
doi:10.1109/LMWC.2004.828029

36. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 543-545, 2006, doi:10.1109/LMWC.2006.882400.
doi:10.1109/LMWC.2006.882400