Vol. 70
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-12-15
Online-Calibrated CS-Based Indoor Localization Over IEEE 802.11 Wireless Infrastructure
By
Progress In Electromagnetics Research C, Vol. 70, 73-81, 2016
Abstract
Recent technological achievements have made it low cost to realize indoor localization using the received signal strength (RSS) information from Wi-Fi signals. However, the current RSS-based indoor localization techniques have two major challenges: one is that the RSS signal is quite sensitive to channel conditions, and the other is that sufficient number of access points (APs) is needed to provide enough RSS measurements for guaranteeing good performance. To solve these problems, this paper proposes an adaptive compressive sensing (CS) based indoor localization method based on the IEEE 802.11 Wi-Fi standard. The novel feature of this method is to dynamically adjust both the dictionary and the sparse solution using an online dictionary learning (DL) technology so that the location solution can better match the real-time RSS scenario. Meanwhile, an improved approximate l0 norm minimization algorithm is presented to enhance sparse recovery speed and reduce the number of APs required by indoor localization systems. The effectiveness of the proposed scheme is demonstrated by experimental results where the proposed algorithm yields substantial improvement for localization performance and reduces computation complexity.
Citation
Wei Ke, Jie Jin, Hengkuan Xu, Kunliang Yu, and Jianhua Shao, "Online-Calibrated CS-Based Indoor Localization Over IEEE 802.11 Wireless Infrastructure," Progress In Electromagnetics Research C, Vol. 70, 73-81, 2016.
doi:10.2528/PIERC16101602
References

1. Gonzalo, S. G., A. L. Jose, J. B. David, and L. R. Gustavo, "Challenges in indoor global navigation satellite systems," IEEE Signal Process. Mag., Vol. 29, No. 2, 108-131, 2012.
doi:10.1109/MSP.2011.943410

2. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

3. Dianu, M. D., J. Riihijarvi, and M. Petrova, "Measurement-based study of the performance of IEEE 802.11ac in an indoor environment," Proc. IEEE International Conference on Communications, 5771-5776, Sydney, Australia, Jun. 2014.

4. Kaemarungsi, K. and P. Krishnamurthy, "Properties of indoor received signal strength for Wi-Fi location fingerprinting," Proc. IEEE International Conference on Mobile and Ubiquitous System, 14-23, Boston, USA, Aug. 2004.

5. Golmie, N., "Interference in the 2.4GHz band," Proc. International Conference on Applications and Services in Wireless Networks, 2540-2545, Helsinki, Finland, Jue. 2001.

6. Liu, H., H. Darabi, H. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Trans. Systems, Man, and Cybernetics — Part C, Vol. 37, No. 6, 1067-1080, 2007.
doi:10.1109/TSMCC.2007.905750

7. Cevher, V., M. F. Duarte, and R. G. Baraniuk, "Distributed target localization via spatial sparsity," Proc. 16th European Signal Processing Conference, 15-19, Lausanne, Switzerland, Aug. 2008.

8. Feng, C., W. S. A. Au, S. Valaee, and Z. Tan, "Received signal strength based indoor positioning using compressive sensing," IEEE Trans. Mobile Computing, Vol. 11, No. 12, 1983-1993, 2012.
doi:10.1109/TMC.2011.216

9. Zhang, L. and Z. Tan, "Study on compressive sensing in the application of wireless localization," J. Internet Technol., Vol. 11, No. 1, 129-134, 2010.

10. Zhang, B., X. Cheng, N. Zhang, Y. Cui, Y. Li, and Q. Liang, "Sparse target counting and localization in sensor networks based on compressive sensing," Proc. IEEE INFOCOM, 2255-2263, Shanghai, China, Apr. 2011.

11. Feng, C., W. S. A. Au, S. Valaee, and Z. Tan, "Orientation-aware indoor localization using affinity propagation and compressive sensing," Proc. IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, 261-264, Aruba, Netherlands, Dec. 2009.

12. Ke, W. and L.Wu, "Indoor localization in the presence of RSS variations via sparse solution finding and dictionary learning," Progress In Electromagnetics Research B, Vol. 45, 353-368, 2012.
doi:10.2528/PIERB12091405

13. Chang, N., R. Rashidzadeh, and M. Ahmadi, "Robust indoor positioning using differential Wi-Fi access points," IEEE Trans. Consumer Electron., Vol. 56, No. 3, 1860-1867, Aug. 2010.
doi:10.1109/TCE.2010.5606338

14. Lim, H., L. C. Kung, and J. C. Hou, "Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure," Wireless Netw, Vol. 16, No. 2, 405-420, 2010.
doi:10.1007/s11276-008-0140-3

15. Honkavirta, V., T. Perala, S. A. Loytty, and R. Piche, "A comparative survey of Wi-Fi location fingerprinting methods," Proc. 6th Workshop on Positioning, Navigation and Communication, 243-251, Hannover, Germany, Mar. 2009.

16. Fang, S. H., Y. T. Hsu, and W. H. Kuo, "Dynamic fingerprinting combination for improved mobile localization," IEEE Trans. Wireless Comm., Vol. 10, No. 12, 4018-4022, Dec. 2011.
doi:10.1109/TWC.2011.101211.101957

17. Rappaport, T. S., Wireless Communication: Principles and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1999.

18. Tosic, I. and P. Frossard, "Dictionary learning," IEEE Signal Process. Mag., Vol. 28, No. 2, 27-38, 2011.
doi:10.1109/MSP.2010.939537

19. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Applicat., Vol. 14, No. 5–6, 877-905, Jun. 2008.
doi:10.1007/s00041-008-9045-x

20. Mohimani, H., M. B. Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Trans. Signal Process., Vol. 57, No. 1, 289-301, 2009.
doi:10.1109/TSP.2008.2007606

21. Antoniou, A. and W.-S. Lu, Practical Optimization: Algorithms and Engineering Applications, Springer, 2006.

22. Rubinstein, R., A. M. Bruckstein, and M. Elad, "Dictionaries for sparse representation modeling," Proc. IEEE, Vol. 98, No. 6, 1045-1057, 2010.
doi:10.1109/JPROC.2010.2040551

23. Mairal, J., F. Bach, J. Ponce, and G. Sapiro, "Online learning for matrix factorization and sparse coding," J. Mach. Learn. Res., Vol. 11, No. 3, 19-60, Jan. 2010.

24. Cheung, K. W., H. C. So, W.-K. Ma, and Y. T. Chan, "A constrained least squares approach to mobile positioning: Algorithms and optimality," EURASIP J. Applied Signal Process., Vol. 2006, 123, 2006.