Vol. 69
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-11-23
400 GHz 1.3 dBi Leaky Wave Antenna in CMOS 1.3 um Process
By
Progress In Electromagnetics Research C, Vol. 69, 191-198, 2016
Abstract
A 400 GHz monolithic leaky wave antenna (LWA) is presented in this paper. The proposed LWA, constructed by the unit cell with multiple structural parameters, is regarded as the on-chip microstrip with perforation on the signal trace and the ground plane. A hybrid full-wave eigenvalue method theoretically extracts the complex propagation constants of first higher-order mode (EH1) of the perforated microstrip to improve the unit cell design. The extracted results also assist in realizing the differential feeding network to excite the leaky mode of the proposed antenna in high efficiency. A 400 GHz LWA prototype is designed and fabricated in CMOS 0.13 μm 1P8M process. The on-chip experiments show the measured input return loss including the effects of the contact pad lower than 10 dB from 380 GHz to 420 GHz. The measured antenna gain is higher than 0.8 dBi and has a maximum value of 1.3 dBi at 400 GHz. From 390 GHz to 405 GHz, the measured main beam is at 33° to 43° from broadside, indicating good agreement with the calculated results.
Citation
Qianru Weng, Xinru Li, Hsien-Shun Wu, and Ching-Kuang Tzuang, "400 GHz 1.3 dBi Leaky Wave Antenna in CMOS 1.3 um Process," Progress In Electromagnetics Research C, Vol. 69, 191-198, 2016.
doi:10.2528/PIERC16091402
References

1. Cheema, H. M. and A. Shamim, "The last barrier: on-chip antenna," IEEE Microw. Mag., Vol. 14, No. 1, 79-91, 2003.
doi:10.1109/MMM.2012.2226542

2. Chen, I. J., H. Wang, and P. W. Hsu, "A V-band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front end," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2461-2468, 2003.
doi:10.1109/TMTT.2003.819212

3. Abbasi, M., S. Gunnarsson, N. Wadefalk, R. Kozhuharov, J. Svedin, S. Cherednichenko, I. Angelov, I. Kallfass, A. Leuther, and H. Zirath, "Single-chip 220-GHz active heterodyne receiver and transmitter MMICs with on-chip integrated antenna," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 2, 466-478, 2010.
doi:10.1109/TMTT.2010.2095028

4. Baek, Y. H., L. H. Truong, S. W. Park, S. J. Lee, Y. S. Chae, E. H. Rhee, H. C. Park, and J. K. Rhee, "94-GHz log-periodic antenna on GaAs substrate using air-bridge structure," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 909-912, 2005.

5. Seok, E., D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao, W. Knap, and K. O. Kenneth, "Progress and challenges towards terahertz CMOS integrated circuits," IEEE J. Solid-State Circuits, Vol. 45, No. 8, 1554-1564, 2008.
doi:10.1109/JSSC.2010.2049793

6. Pan, S. J., F. Caster, P. Heydari, and F. Capolino, "A 94-GHz extremely thin metasurface-based BiCMOS on-chip antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4439-4454, 2014.
doi:10.1109/TAP.2014.2330575

7. Pan, S. J. and F. Capolino, "Design of a CMOS on-chip slot antenna with extremely flat cavity at 140 GHz," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 827-831, 2011.
doi:10.1109/LAWP.2011.2163291

8. Bhattacharyya, A. and R. Garg, "Effect of substrate on the efficiency of an arbitrarily shaped microstrip patch antenna," IEEE Trans. Antennas Propag., Vol. 34, No. 10, 1181-1189, 1986.
doi:10.1109/TAP.1986.1143748

9. Hu, S., Y. Z. Xiong, B. Zhang, L. Wang, T. G. Lim, M. Je, and M. Madihian, "A SiGe BiCMOS transmitter/receiver chipset with on-chip SIW antennas for terahertz applications," IEEE J. Solid- State Circuits, Vol. 47, No. 11, 2654-2665, 2012.
doi:10.1109/JSSC.2012.2211658

10. Necu1oiu, D., A. Muller, E. Laskin, and S. P. Voinigescu, "160 GHz on-chip dipole antenna structure in silicon technology," Proc. IEEE Int. Semiconductor Conf., 245-248, Sinaia, Romania, October 2007.

11. Tzuang, C. K. C., H. S. Wu, X. R. Li, and J. G. Ma, "Monolithic synthetic transmission-line leakymode antenna at THz," The 43rd European Microwave Conf., 499-503, Nuremberg, Germany, October, 2013.

12. Li, X. R., C. K. C. Tzuang, and H. S. Wu, "Anomalous dispersion characteristics of periodic substrate integrated waveguides from microwave to terahertz," IEEE Trans. Microwave Theory Tech., Vol. 63, No. 7, 2142-2153, 2015.
doi:10.1109/TMTT.2015.2431265

13. Tsai, K. H. and C. K. C. Tzuang, "Mode symmetry analysis and design of CMOS synthetic coupled transmission lines," IEEE MTT-S Int. Microwave Symp., 258-262, Boston, MA, 2009.

14. Oliner, A. A. and D. R. Jackson, "Leaky-wave antennas," Antenna Engineering Handbook, McGraw-Hill, New York, 2007.