Vol. 67
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-09-27
An Improved Broadband SIW Phase Shifter with Embedded Air Strips
By
Progress In Electromagnetics Research C, Vol. 67, 185-192, 2016
Abstract
In this paper, an improved broadband substrate integrated waveguide (SIW) phase shifter with embedded air strips is presented. Phase shifter can be generated based on the variable widths of SIW, variable lengths of microstrip line and a row of embedded air strips. The simulated and measured results both show that this kind of SIW phase shifter has excellent performance for a wider bandwidth. Measured results indicate that the proposed SIW phase shifters for the 45° and 90° versions have achieved the fractional bandwidths of 59.6% from 10.2 to 18.85 GHz with the accuracy of 2.5°, and of 62.3% from 9.5 to 18.1 GHz with the accuracy of 5°, respectively. The return losses are better than 15.8 dB and 14.5 dB for 45° and 90° modules, respectively. In addition, the insertion losses are both found to be better than 1.6 dB in the considered band.
Citation
Hao Peng, Xinlin Xia, Serioja Ovidiu Tatu, and Tao Yang, "An Improved Broadband SIW Phase Shifter with Embedded Air Strips," Progress In Electromagnetics Research C, Vol. 67, 185-192, 2016.
doi:10.2528/PIERC16080904
References

1. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave Wireless Components Letters, Vol. 12, No. 9, 333-335, Sep. 2002.
doi:10.1109/LMWC.2002.803188

2. Cheng, Y. J., W. Hong, and K. Wu, "Broadband self-compensating phase shifter combining delay line and equal-length unequal-width phaser," IEEE Transactions on Microwave Theory and Technology, Vol. 58, No. 1, 203-210, Jan. 2010.
doi:10.1109/TMTT.2009.2035942

3. Sellal, K., L. Talbi, T. A. Denidni, and J. Lebel, "Design and implementation of a substrate integrated waveguide phase shifter," IET Microwaves Antennas and Propagation, Vol. 2, No. 2, 194-199, Mar. 2008.
doi:10.1049/iet-map:20070135

4. Sellal, K., L. Talbi, and M. Nedil, "Design and implementation of a controllable phase shifter using substrate integrated waveguide," IET Microwaves Antennas and Propagation, Vol. 6, No. 9, 1090-1094, Jun. 2012.
doi:10.1049/iet-map.2011.0380

5. Kuhestani, H., M. Naser-Moghadasi, M. Maleki, and F. B. Zarrabi, "Phase shifter designing base on half mode substrate integrated waveguide with reconfigurable quality," Microwave and Optic Technology Letters, Vol. 57, No. 11, 2562-2567, Aug. 2015.
doi:10.1002/mop.29399

6. Yang, T., M. Ettorre, and R. Sauleau, "Novel phase shifter design based on substrate-integratedwaveguide technology," IEEE Microwave Wireless Components Letters, Vol. 22, No. 10, 518-520, Oct. 2012.
doi:10.1109/LMWC.2012.2217122

7. Ebrahimpouri, M., S. Nikmehr, and A. Pourziad, "Broadband compact SIW phase shifter using Omega particles," IEEE Microwave Wireless Components Letters, Vol. 24, No. 11, 748-750, Nov. 2014.
doi:10.1109/LMWC.2014.2350692

8. Djerafi, T., K. Wu, and S. O. Tatu, "Substrate-integrated waveguide phase shifter with rod-loaded artificial dielectric slab," Electronics Letters, Vol. 51, No. 9, 707-709, Apr. 2015.
doi:10.1049/el.2015.0286

9. Boudreau, I., K. Wu, and D. Deslandes, "Broadband phase shifter using air holes in substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 1-4, Baltimore, United States, 2011.

10. Yang, F., H. X. Yu, B. Zhang, Y. Zhou, and Z. X. Zhu, "Substrate integrated waveguide phase shifter," International Conference on Electronics, Communications and Control, 3966-3968, Zhejiang, China, 2011.

11. Ding, Y. and K. Wu, "SIW varactor-tuned phase shifter and phase modulator," IEEE MTT-S Int. Microwave Symposium Digest, 1-3, Montreal, Canada, 2012.

12. Ding, Y. and K. Wu, "Varactor-tuned substrate integrated waveguide phase shifter," IEEE MTT-S Int. Microwave Symposium Digest, 1-4, Baltimore, United States, 2011.

13. Che, W., E. K.-N. Yung, K. Wu, and X. Nie, "Design investigation on millimeter-wave ferrite phase shifter in substrate integrated waveguide," Progress In Electromagnetics Research, Vol. 45, 263-275, 2004.
doi:10.2528/PIER03082801

14. Cheng, Y. J., Q. Huang, Y. Zhou, and C. Weng, "Ferrite-loaded half mode substrate integrated waveguide phase shifter," Progress In Electromagnetics Research Letters, Vol. 47, 85-90, 2014.
doi:10.2528/PIERL14052401

15. Wang, Z., B. Yan, R.-M. Xu, and Y. Guo, "Design of a ku band six bit phase shifter using periodically loaded-line and switched-line with loaded-line," Progress In Electromagnetics Research, Vol. 76, 369-379, 2007.
doi:10.2528/PIER07071904

16. Cao, W.-Q., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Novel phase-shifting characteristic of CRLH TL and its application in the design of dual-band dual-mode dual-polarization antenna," Progress In Electromagnetics Research, Vol. 131, 375-390, 2012.
doi:10.2528/PIER12081007

17. Kordiboroujeni, Z. and J. Bornemann, "New wideband transition from microstrip line to substrate integrated waveguide," IEEE Transactions on Microwave Theory and Technology, Vol. 62, No. 12, 2983-2989, Dec. 2014.
doi:10.1109/TMTT.2014.2365794

18. Bosisio, R. G., Y. Y. Zhao, X. Y. Xu, S. Abielmona, E. Moldovan, Y. S. Xu, M. Bozzi, S. O. Tatu, C. Nerguisian, J. F. Frigon, C. Caloz, and K. Wu, "New-wave radio," IEEE Microwave Magazine, Vol. 9, No. 1, 89-100, Feb. 2008.
doi:10.1109/MMM.2007.910923

19. Boukari, B., E. Moldovan, R. I. Cojocaru, K. Wu, R. G. Bosisio, and S. O. Tatu, "Millimeter-wave six-port in combined microstrip and substrate-integrated waveguide technologies," Microwave and Optic Technology Letters, Vol. 52, No. 11, 2488-2493, Aug. 2010.
doi:10.1002/mop.25538