Vol. 68
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-10-18
A Novel Low RCS Microstrip Antenna Array Using Thin and Wideband Radar Absorbing Structure Based on Embedded Passives Resistors
By
Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016
Abstract
A novel low radar cross section (RCS) microstrip patch antenna array (1×4) (MSPAA) is reported in this paper. A thin and wideband radar absorber (RA) based on a single octagonal loop (SOL) resistive frequency selective surface (FSS) is designed for realizing out-of-band RCS reduction of the MSPAA from 6.2 GHz to 18 GHz. The RA is designed for -15 dB reflectivity from 6.2 GHz to 18 GHz. Embedded Passives (EP) resistors are used for implementing the resistors as integral to the substrate with no soldering at all which results in a quantum improvement in reliability. Full wave analysis of the low RCS MSPAA with the RA is carried out using HFSS. RCS measurements are performed, and an RCS reduction of 6 to 18 dB is attained compared to the reference antenna array over a wide band from 6 GHz to 18 GHz, with no degradation in VSWR and gain of the antenna array. The thin and wideband RA with its low weight and flight worthy constituent materials can be applied independently as skins of a stealthy UAV configured primarily for low RCS with external shaping, and the proposed antenna array can be used without modifications, as a low RCS conformal antenna structure.
Citation
Madhu A. Ramkumar, Chandrika Sudhendra, and Kark Rao, "A Novel Low RCS Microstrip Antenna Array Using Thin and Wideband Radar Absorbing Structure Based on Embedded Passives Resistors," Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016.
doi:10.2528/PIERC16080506
References

1. Salisbury, W. W., "U.S. Patent, Absorbent body for electromagnetic waves,", No. 2599944, 1952.

2. Eugene, F. K., F. J. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., 9-10, Artech House, Norwood, MA, USA, 1993.
doi:10.1109/TAP.2006.888395

3. Munk, B., P. Munk, and J. Prior, "On designing Jaumann and circuit analog absorbers for oblique angle of incidence," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 2007.

4. Sudhendra, C., V. Mahule, A. C. R. Pillai, A. K. Mohanty, and K. Rao, "Novel embedded passives resistor grid network based wideband radar absorber," IEEE Intl. Conf. on Elect., Computing and Comm. Technologies — IEEE CONECCT, 1-4, DOI: 10.1109/CONECCT 2014.6740359, 2014.
doi:10.1109/TAP.2009.2024490

5. Zadeh, A. K. and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorbers," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2307-2314, Aug. 2009.

6. Costa, F. and A. Monorchio, "Electromagnetic absorbers based on high-impedance surfaces: From ultra-narrowband to ultra-wideband absorption," Advanced Electromagnetics, Vol. 1, No. 3, Oct. 2012.
doi:10.1002/mop.28986

7. Silva, M. W. B., A. L. P. S. Campos, and L. C. Kretly, "Design of thin microwave absorbers using lossy frequency selective surfaces," Microw. Opt. Technol. Lett., Vol. 57, No. 4, Apr. 2015.
doi:10.1109/5.32056

8. Hansen, R. C., "Relationships between antennas as scatterers and radiators," Proc. IEEE, Vol. 77, No. 5, 659-662, May 1989.
doi:10.1109/TAP.2012.2189701

9. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2327-2335, May 2012.
doi:10.2528/PIERC14050503

10. Zheng, J., S. Fang, Y. Jia, and Y. Liu, "RCS reduction of patch array antenna by complementary split-ring resonators structure," Progress In Electromagnetics Research C, Vol. 51, 95-101, 2014.
doi:10.1049/el.2016.0336

11. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section of patch array antenna with miniaturised hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, No. 9, 767-768, Apr. 2016.
doi:10.1049/el.2015.1725

12. Hao, Y., Y. Liu, K. Li, and S. Gong, "Wide band radar cross section reduction of microstrip patch antenna with split-ring resonators," Electron. Lett., Vol. 51, No. 20, 1608-1609, Oct. 2015.
doi:10.1109/LAWP.2015.2402292

13. Liu, Y., Y. Hao, H.Wang, K. Li, and S. Gong, "Low RCS microstrip patch antenna using frequencyselective surface and microstrip resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1290-1293, Feb. 2015.
doi:10.1049/el.2014.1003

14. Jia, Y., Y. Liu, H. Wang, and S. Gong, "Low RCS microstrip antenna using polarization-dependent frequency selective surface," Electron. Lett., Vol. 50, No. 14, 978-979, 2014.
doi:10.1049/iet-map:20070012

15. He, W., R. Jin, and J. Geng, "Low radar cross-section and high performances of microstrip antenna using fractal uniplanar compact electromagnetic band gap ground," IEEE Microw., Antennas Propag., Vol. 1, No. 5, 986-991, 2007.
doi:10.1002/mop.27144

16. Miao, Z., C. Huang, X. Ma, M. Pu, X. Ma, Q. Zhao, and X. Luo, "Design of a patch antenna with dual-band radar cross section reduction," Microw. Opt. Technol. Lett., Vol. 54, No. 11, 2516-2520, Nov. 2012.

17. Zhao, Y., X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, "Broadband metamaterial surface for antenna RCS reduction and gain enhancement," IEEE Trans. Antennas Propag., early access, 2015.
doi:10.1002/mop.28442

18. Chen, Q. and Y. Fu, "A planar stealthy antenna Radome using absorptive frequency selective surface," Microw. Opt. Technol. Lett., Vol. 56, No. 8, 1788-1792, 2014.
doi:10.1109/TAP.2016.2518199

19. Huang, C., W. Pan, X. Ma, and X. Luo, "A frequency reconfigurable directive antenna with wideband low-RCS property," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1173-1178, Jan. 2016.

20. Liu, Y., Y. Hao, K. Li, and S. Gong, "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas Wireless Propag. Lett, Vol. 15, 80-83, May 2015.
doi:10.1002/mop.28442

21. Zheng, Y.-J., J. Gao, X.-Y. Cao, S.-J. Li, and W.-Q. Lli, "Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate," Microw. Opt. Technol. Lett., Vol. 56, No. 8, 1788-1792, 2014.

22. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 57, No. 7, 1738-1741, Jul. 2015.
doi:10.1109/LAWP.2015.2407375

23. Huang, C., W. Pan, X. Ma, B. Jiang, and X. Luo, "Wideband radar cross section reduction of a stacked patch array antenna using metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1369-1372, 2015.
doi:10.1109/8.884491

24. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Trans. Antennas Propag., Vol. 48, No. 8, 1230-1234, Aug. 2000.