Vol. 66
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-29
Gain Enhancement in Planar Monopole Antennas
By
Progress In Electromagnetics Research C, Vol. 66, 129-137, 2016
Abstract
This paper proposes a planar monopole antenna design for achieving gain enhancement. The radiation pattern is achieved straightforwardly by employing a detached glass slab and placing a reflected metal slab after the glass slab onto the antenna structure. Geometrical parameters were examined to optimize the performance of the proposed antenna. Such a configuration causes constructive interference between the incident and reflected fields. The radiation patterns can be adjusted the thickness of the glass slab and dielectric constants. The radiated fields are redistributed because of the inclusion of the glass slab, which has a permittivity of εr = 7.75 and a thickness of h = 1 mm. Consequently, the planar monopole gain achieved using the glass slab and reflected metal slab is increased to approximately 5 dBi, whereas the antenna resonant frequency remains almost unchanged at nearly 14% in impedance bandwidth. The results obtained for the directional pattern, return loss, gain, and radiation efficiency of the proposed antenna were analyzed. The antenna volume of the radiation area and ground plane was 3 × 32 × 52 mm3. Detailed simulations and experiments were conducted to optimize the gain enhancement operations, and the measured results agreed with the simulated ones.
Citation
Lin-Chuan Tsai, "Gain Enhancement in Planar Monopole Antennas," Progress In Electromagnetics Research C, Vol. 66, 129-137, 2016.
doi:10.2528/PIERC16050308
References

1. Rivera-Albino, A. and C. A. Balanis, "Gain enhancement in microstrip patch antennas using hybrid substrates," IEEE Antenna Propagat. Lett., Vol. 12, 476-479, 2013.
doi:10.1109/LAWP.2013.2256333

2. Lai, W.-C., A.-C. Sun, N.-W. Chen, and C.-W. Hsue, "Gain enhancement of planar monopole with magnetodielectric material," Progress In Electromagnetics Research C, Vol. 21, 179-190, May 2011.
doi:10.2528/PIERC11032101

3. Chung, K. L. and S. Kharkovsky, "Mutual coupling reduction and gain enhancement using angular offset elements in circularly polarized patch array," IEEE Antenna Wireless Propagat. Lett., Vol. 12, 1122-1124, 2013.
doi:10.1109/LAWP.2013.2280656

4. Yang, W., W. Che, and H. Wang, "High-gain design of a patch antenna using stub-loaded artificial magnetic conductor," IEEE Antenna Wireless Propagat. Lett., Vol. 12, 1172-1175, 2013.
doi:10.1109/LAWP.2013.2280576

5. Moharamzadeh, E. and A. M. Javan, "Triple-band frequency-selective surfaces to enhance gain of X-band triangle slot antenna," IEEE Antenna Wireless Propagat. Lett., Vol. 12, 1145-1148, 2013.
doi:10.1109/LAWP.2013.2281074

6. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propagat., Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113

7. Weily, A. R., T. S. Bird, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3382-3390, Nov. 2008.
doi:10.1109/TAP.2008.2005538

8. Debogovic, T., J. Bartolic, and J. Perruisseau-Carrier, "Dual-polarized partially reflective surface antenna With MEMS-based beamwidth reconfiguration," IEEE Trans. Antennas Propagat., Vol. 62, No. 1, 228-236, Jan. 2014.
doi:10.1109/TAP.2013.2287013

9. Debogovic, T. and J. Perruisseau-Carrier, "Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control," IEEE Trans. Antennas Propagat., Vol. 62, No. 1, 446-449, Jan. 2014.
doi:10.1109/TAP.2013.2287018

10. Hosseini, A., F. Capolino, F. De Flaviis, P. B. G. Lovat, and D. R. Jackson, "Improved bandwidth formulas for Fabry-P´erot cavity antennas formed by using a thin partially-reflective surface," IEEE Trans. Antennas Propagat., Vol. 62, No. 5, 2361-2367, May 2014.
doi:10.1109/TAP.2014.2307337

11. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antenna Wireless Propagat. Lett., Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926

12., HFSS 13, Ansoft Corporation (ANSYS), Available: www.ansoft.com.

13. Cheng, D. K., Fundamentals of Engineering Electromagnetics, 2 Ed., Addison Wesley, 1993.