Vol. 65
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-06-24
Dual-Chirp Arbitrary Microwave Waveform Generation by Using a Dual Parallel Mach-Zehnder Modulator Feeding with RF Chirp Signal
By
Progress In Electromagnetics Research C, Vol. 65, 79-92, 2016
Abstract
In this paper, dual-chirped arbitrary microwave waveform has been generated through photonics, incorporated with single dual parallel mach-zehnder modulator (DPMZM) inbuilt mach zehnder interferometer (MZI) structure. We have taken two cases of chirping i.e. linear and nonlinear chirps. A case of linear chirping has been explored previously. However, to the best of the authors' knowledge effect of nonlinear chirping in this paper is evaluated for the first time. Other photonics approaches are also available, such as spectra shaping and wavelength to time mapping. But due to fixed spectral response of spectral shaper, center frequency of linear chirp generated waveform is fixed. To get the large center frequency again we have to use large number of spectral shapers which will increase the system complexity. DPMZM avoids such difficulties. These MZMs are biased at the minimum transmission point to get carrier suppressed modulation. Product modulator (PM) is cascaded to the lower arm of DPMZM. Here by using DPMZM we get two advantages. First we have two complimentarily chirped microwave waveforms and second up conversion of the frequency of microwave carrier. A dual-chirped microwave waveform with centre frequency 6 GHz with bandwidth 200 MHz and 2 GHz is generated. The paper gives specific details about various performance parameters such as input signal frequency and power, output signal parameters viz output frequency, chirp rate, chirp bandwidth, time bandwidth product (TBW), etc. The overall model and its performance parameters are computed through MATLAB simulation.
Citation
Sanjeev Kumar Raghuwanshi, Ritesh Kumar, and Nimish Kumar Srivastava, "Dual-Chirp Arbitrary Microwave Waveform Generation by Using a Dual Parallel Mach-Zehnder Modulator Feeding with RF Chirp Signal," Progress In Electromagnetics Research C, Vol. 65, 79-92, 2016.
doi:10.2528/PIERC16043004
References

1. Seeds, A. J., "Microwave photonics," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 3, 877-887, Mar. 2002.
doi:10.1109/22.989971

2. Seeds, A. J. and K. Williams, "Microwave photonics," J. Lightwave Technol., Vol. 24, No. 12, 4628-4641, Dec. 2006.
doi:10.1109/JLT.2006.885787

3. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, Vol. 1, 319-330, Sep. 2007.
doi:10.1038/nphoton.2007.89

4. Richards, M. A., Fundamentals of Radar Signal Processing, 2 Ed., McGraw-Hill, New York, NY, USA, 2014.

5. Skolnik, M. I., Introduction to Radar Systems, 2 Ed., McGraw-Hill, New York, NY, USA, 2001.

6. Fitzgerald, R. J., "Effects of range-doppler coupling on chirp radar tracking accuracy," IEEE Trans. Aerosp. Electron. Syst., Vol. 10, No. 4, 528-532, Jul. 1974.

7. Amar, A. and Y. Buchris, "Asynchronous transmitter position and veloc-ity estimation using a dual linear chirp," IEEE Signal Process. Lett., Vol. 21, No. 9, 1078-1082, Sep. 2014.
doi:10.1109/LSP.2014.2321330

8. Dotan, A. A. and I. Rusnak, "Method of measuring closing velocity by transmitting a dual-chirp signal," Proc. 26th IEEE Conf. Elect. Electron. Eng. Israel, 000258-000262, Eilat, Israel, Nov. 2010.

9. Zhu, D. and J. Yao, "Dual-chirp microwave waveform generation using a dual-parallel Mach- Zehnder modulator," IEEE Photonics Technology Letters, Vol. 27, No. 13, Jul. 1, 2015.

10. Iwashita, K., T. Moriya, N. Tagawa, and M. Yoshizawa, "Doppler measurement using a pair of FM-chirp signals," Proc. IEEE Symp. Ultrason., 1219-1222, Honolulu, HI, USA, Oct. 2003.

11. Middleton, R. J. C., D. G. Macfarlane, and D. A. Robertson, "Range autofocus for linearly frequency-modulated continuous wave radar," IET Radar, Sonar Navigat., Vol. 5, No. 3, 288-295, Mar. 2011.
doi:10.1049/iet-rsn.2010.0097

12. Weigel, R., et al. "Microwave acoustic materials, devices, and applications," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 3, 738-749, Mar. 2002.
doi:10.1109/22.989958

13. Panasik, C. M., "Multiple frequency acoustic reflector array and monolithic cover for resonators and method,", U.S. Patent 6 441 703, Aug. 27, 2002.

14. Symons, P., Digital Waveform Generation, Cambridge University Press, New York, NY, USA, 2013.
doi:10.1017/CBO9781139108072

15. Gomez-Garcia, D., C. Leuschen, F. Rodriguez-Morales, J.-B. Yan, and P. Gogineni, "Linear chirp generator based on direct digital synthesis and frequency multiplication for airborne FMCW snow probing radar," Proc. IEEE MTT-S Int. Microw. Symp. (IMS), 1-4, Tampa, FL, USA, Jun. 2014.

16. Yao, J., "Photonic generation of microwave arbitrary waveforms," Opt. Commun., Vol. 284, No. 15, 3723-3736, Jul. 2011.
doi:10.1016/j.optcom.2011.02.069

17. Khan, M. H., et al. "Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper," Nature Photon., Vol. 4, 117-122, Feb. 2010.
doi:10.1038/nphoton.2009.266

18. Kanno, A. and T. Kawanishi, "Broadband frequency-modulated continuous-wave signal generation by optical modulation technique," J. Lightw. Technol., Vol. 32, No. 20, 3566-3572, Oct. 15, 2014.
doi:10.1109/JLT.2014.2318724

19. Yao, T., D. Zhu, S. Liu, F. Zhang, and S. Pan, "Wavelength-division multiplexed fiber-connected sensor network for source local-ization," IEEE Photon. Technol. Lett., Vol. 26, No. 18, 1874-1877, Sep. 15, 2014.

20. Li, W. and J. P. Yao, "Microwave frequency multiplication using two cascaded Mach-Zehnder modulators," Proc. 2009 Asia-Pacific Microwave Photonics Conf., Beijing, China, Apr. 2009.

21. Li, W. and J. P. Yao, "Investigation of photonically assisted microwave frequency multiplication based on external modulation," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 11, 3259-3268, Nov. 2010.
doi:10.1109/TMTT.2010.2075671