Vol. 66
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-25
Multichannel Narrowband Tunable Filters Based on Multilayer Structures Made of Yttrium Barium Copper Oxide and Strontium Titanate Layers
By
Progress In Electromagnetics Research C, Vol. 66, 109-116, 2016
Abstract
The purpose of this paper is to theoretically investigate the properties of electromagnetic wave propagating in both one-dimensional periodic and quasiperiodic photonic crystals consisting of high-temperature yttrium barium copper oxide and strontium titanate dielectric nano-scale materials in the ultraviolet wavelength region. By using the transfer matrix method, angle-, polarization- and thickness-dependences of created PBGs are explored individually for periodic and quasiperiodic structures, and some interesting features are presented in the results section. Such supposed structures can be acts as very compact polarization sensitive splitters and defect-free multichannel narrowband tunable filters.
Citation
Hadi Rahimi, and Ahmad Heshmati Sis, "Multichannel Narrowband Tunable Filters Based on Multilayer Structures Made of Yttrium Barium Copper Oxide and Strontium Titanate Layers," Progress In Electromagnetics Research C, Vol. 66, 109-116, 2016.
doi:10.2528/PIERC16041801
References

1. Chigrin, D. N., et al. "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A Mate. Sci. Process., Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849

2. John, S., et al. "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. John, S., et al. "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A, Vol. 50, No. 2, 1764-1769, 1994.
doi:10.1103/PhysRevA.50.1764

4. Russell, P. S., "Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures," Opt. Commun., Vol. 160, 66-71, 1999.
doi:10.1016/S0030-4018(98)00659-2

5. Kramper, P., et al. "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett., Vol. 92, 113903–7, 2004.

6. Janot, C., Quasicrystals, Clarendon Press, Oxford, 1994.

7. Abdelaziz, K. B., J. Zaghdoudi, M. Kanzari, and B. Rezig, "A broad ominidirectional re?ection band obtain from deformed Fibonacii quasi-periodic one dimensional photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 7, 544-549, 2005.
doi:10.1088/1464-4258/7/10/005

8. Hsueh, W. J., "Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism," Phys. Rev. A, Vol. 78, 013836-013842, 2008.
doi:10.1103/PhysRevA.78.013836

9. Tang, Z., et al. "One-way electromagnetic waveguide using multiferroic Fibonacci superlattices," Opt. Commun., Vol. 356, 21-24, 2015.
doi:10.1016/j.optcom.2015.07.040

10. Lavrinenko, A. V., et al. "Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter," Physical Review E — Statistical, Nonlinear, and Soft Matter Physics, Vol. 65, 036621-036628, 2002.
doi:10.1103/PhysRevE.65.036621

11. Hattori, H. T., et al. "Cantor set fiber Bragg grating," Journal of the Optical Society of America A: Optics and Image Vision, Vol. 17, 1583-1589, 2000.
doi:10.1364/JOSAA.17.001583

12. Bednorz, J. G., "Possible high Tc superconductivity in the Ba-La-Cu-O system," Z. Physik, Vol. 64, 189-195, 1986.
doi:10.1007/BF01303701

13. Takeda, H., et al. "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B, Vol. 67, 245109-245115, 2003.
doi:10.1103/PhysRevB.67.245109

14. Feng, L., et al. "Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents," J. Appl. Phys., Vol. 97, 073104-073110, 2005.
doi:10.1063/1.1866473

15. Pei, T., et al. "A temperature modulation photonic crystal Mach-Zehnder interferometer composed of copper oxide high-temperature superconductor," J. Appl. Phys., Vol. 101, 084502–5, 2007.

16. Diaz-Valencia, B. F., "Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods," Physica C, Vol. 505, 74-79, 2014.
doi:10.1016/j.physc.2014.07.012

17. Liu, H., et al. "Temperature-dependent random lasing from superconducting scattering gain media," Optik, Vol. 126, 5579-5582, 2015.
doi:10.1016/j.ijleo.2015.09.080

18. Tinkham, M., Introduction to Superconductivity, McGraw-Hill, New York, 1996.