1. Chigrin, D. N., et al. "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A Mate. Sci. Process., Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849
2. John, S., et al. "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486
3. John, S., et al. "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A, Vol. 50, No. 2, 1764-1769, 1994.
doi:10.1103/PhysRevA.50.1764
4. Russell, P. S., "Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures," Opt. Commun., Vol. 160, 66-71, 1999.
doi:10.1016/S0030-4018(98)00659-2
5. Kramper, P., et al. "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett., Vol. 92, 113903–7, 2004.
6. Janot, C., Quasicrystals, Clarendon Press, Oxford, 1994.
7. Abdelaziz, K. B., J. Zaghdoudi, M. Kanzari, and B. Rezig, "A broad ominidirectional re?ection band obtain from deformed Fibonacii quasi-periodic one dimensional photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 7, 544-549, 2005.
doi:10.1088/1464-4258/7/10/005
8. Hsueh, W. J., "Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism," Phys. Rev. A, Vol. 78, 013836-013842, 2008.
doi:10.1103/PhysRevA.78.013836
9. Tang, Z., et al. "One-way electromagnetic waveguide using multiferroic Fibonacci superlattices," Opt. Commun., Vol. 356, 21-24, 2015.
doi:10.1016/j.optcom.2015.07.040
10. Lavrinenko, A. V., et al. "Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter," Physical Review E — Statistical, Nonlinear, and Soft Matter Physics, Vol. 65, 036621-036628, 2002.
doi:10.1103/PhysRevE.65.036621
11. Hattori, H. T., et al. "Cantor set fiber Bragg grating," Journal of the Optical Society of America A: Optics and Image Vision, Vol. 17, 1583-1589, 2000.
doi:10.1364/JOSAA.17.001583
12. Bednorz, J. G., "Possible high Tc superconductivity in the Ba-La-Cu-O system," Z. Physik, Vol. 64, 189-195, 1986.
doi:10.1007/BF01303701
13. Takeda, H., et al. "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B, Vol. 67, 245109-245115, 2003.
doi:10.1103/PhysRevB.67.245109
14. Feng, L., et al. "Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents," J. Appl. Phys., Vol. 97, 073104-073110, 2005.
doi:10.1063/1.1866473
15. Pei, T., et al. "A temperature modulation photonic crystal Mach-Zehnder interferometer composed of copper oxide high-temperature superconductor," J. Appl. Phys., Vol. 101, 084502–5, 2007.
16. Diaz-Valencia, B. F., "Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods," Physica C, Vol. 505, 74-79, 2014.
doi:10.1016/j.physc.2014.07.012
17. Liu, H., et al. "Temperature-dependent random lasing from superconducting scattering gain media," Optik, Vol. 126, 5579-5582, 2015.
doi:10.1016/j.ijleo.2015.09.080
18. Tinkham, M., Introduction to Superconductivity, McGraw-Hill, New York, 1996.