Vol. 64
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-05-22
A UHF Third Order 5-Bit Digital Tunable Bandpass Filter Based on Mixed Coupled Open Ring Resonators
By
Progress In Electromagnetics Research C, Vol. 64, 89-96, 2016
Abstract
This paper presents a third-order digital tunable bandpass filter based on digitally tunable capacitor loaded microstrip open ring resonator. Magnetic dominated mixed coupling is utilized to make the coupling coefficient meet the requirement of stable bandwidth response. Electric source-load coupling is designed to generate a transmission zero for improving the frequency selectivity. This filter is designed, fabricated and measured. The measurement shows that the filter can be digitally tuned by 5-bits pure digital command. The fractional bandwidth is 9±1%, and the tuning range is from 410 MHz to 820 MHz.
Citation
Mingye Fu, Qian-Yin Xiang, Dan Zhang, Dengyao Tian, and Quanyuan Feng, "A UHF Third Order 5-Bit Digital Tunable Bandpass Filter Based on Mixed Coupled Open Ring Resonators," Progress In Electromagnetics Research C, Vol. 64, 89-96, 2016.
doi:10.2528/PIERC16032701
References

1. Asadi, H., H. Volos, M. M. Marefat, and T. Bose, "Metacognition and the next generation of cognitive radio engines," IEEE Communications Magazine, Vol. 54, No. 1, 76-82, 2016.
doi:10.1109/MCOM.2016.7378429

2. Abbaspour-Sani, E., N. Nasirzadeh, and G. R. Dadashzadeh, "Two novel structures for tunable MEMS capacitor with RF applications," Progress In Electromagnetics Research, Vol. 68, 169-183, 2007.
doi:10.2528/PIER06081404

3. Gao, L., X. Y. Zhang, and Q. Xue, "Compact tunable filtering power divider with constant absolute bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 10, Oct. 2015.

4. Xiang, Q., Q. Feng, X. Huang, and D. Jia, "Electrical tunable microstrip LC bandpass filters with constant bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1124-1130, 2013.
doi:10.1109/TMTT.2013.2241781

5. Uher, J. and W. J. R. Hoefer, "Tunable microwave and millimeter-wave bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 39, 643-653, Apr. 1991.
doi:10.1109/22.76427

6. Xiang, Q., Q. Feng, and X. Huang, "Half-mode substrate integrated waveguide (HMSIW) filters and its application to tunable filters," Journal of Electromagnetic Waves and Applications, Vol. 25, 2043-2053, 2011.
doi:10.1163/156939311798072027

7. Huang, X., L. Zhu, Q. Feng, Q. Xiang, and D. Jia, "Tunable bandpass filter with independently controllable dual passbands," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3200-3208, Sep. 2013.
doi:10.1109/TMTT.2013.2273894

8. Xiang, Q., Q. Feng, and X. Huang, "Substrate integrated waveguide filters and mechanical/ electrical reconfigurable half-mode substrate integrated waveguide filters," Journal of Electromagnetic Waves and Applications, Vol. 26, 1756-1766, 2012.
doi:10.1080/09205071.2012.711526

9. El-Tanani, M. A. and G. M. Rebeiz, "A two-pole two-zero tunable filter with improved linearity," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 4, Apr. 2009.
doi:10.1109/TMTT.2009.2015124

10. Zhang, X. Y., C. H. Chan, Q. Xue, and B.-J. Hu, "RF tunable bandstop filters with constant bandwidth based on a doublet configuration," IEEE Trans. Ind. Electron., Vol. 59, No. 2, 1257-1265, Feb. 2012.
doi:10.1109/TIE.2011.2158038

11. Luo, X., S. Sun, and R. B. Staszewski, "Tunable bandpass filter with two adjustable transmission poles and compensable coupling," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 9, 2003-2013, Sep. 2014.
doi:10.1109/TMTT.2014.2337287

12. Wang, Y., F. Wei, H. Xu, and X.-W. Shi, "A tunable 1.4–2.5GHz bandpass filter based on single mode," Progress In Electromagnetics Research, Vol. 135, 261-269, 2013.
doi:10.2528/PIER12111704

13. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808

14. Xiang, Q.-Y., Q. Feng, X.-G. Huang, and D.-H. Jia, "A novel microstrip Lc reconfigurable bandpass filter," Progress In Electromagnetics Research Letters, Vol. 36, 171-179, 2013.
doi:10.2528/PIERL12111202

15. Cao, L., G. Li, J. Hu, and L. Yin, "A miniaturized tunable bandpass filter with constant fractional bandwidth," Progress In Electromagnetics Research C, Vol. 57, 89-97, 2015.
doi:10.2528/PIERC15032701

16. Jia, D.-H., Q. Feng, X.-G. Huang, and Q.-Y. Xiang, "A dual-band bandpass filter with a tunable passband," Progress In Electromagnetics Research C, Vol. 37, 107-118, 2013.
doi:10.2528/PIERC12121210

17. Tu, W.-H., "Compact low-loss reconfigurable bandpass filter with switchable bandwidth," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 4, 208-210, Apr. 2010.
doi:10.1109/LMWC.2010.2042553

18. Ur Rehman, M. Z., Z. Baharudin, M. A. Zakariya, M. H. M. Khir, M. T. Jilani, and M. T. Khan, "RF MEMS based half mode bowtie shaped substrate integrated waveguide tunable bandpass filter," Progress In Electromagnetics Research C, Vol. 60, 21-30, 2015.
doi:10.2528/PIERC15091407

19. Young, R. M., J. D. Adam, et al. "Low-loss bandpass RF filter using MEMS capacitance switches to achieve a one-octave tuning range and independently variable bandwidth," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1781-1784, 2003.

20. Park, S. J., K. Y. Le, and G. M. Rebeiz, "Low-loss 5.15–5.70-GHz RF MEMS switchable filter for wireless LAN applications," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 11, 3931-3939, Nov. 2006.
doi:10.1109/TMTT.2006.884625

21. El-Tanani, M. A. and G. M. Rebeiz, "High-performance 1.5–2.5-GHz RF-MEMS tunable filters for wireless applications," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 6, Jun. 2010.
doi:10.1109/TMTT.2010.2049166

22., PE64904: 5-bit 32-state Digitally Tunable Capacitor, 100–3000 MHz, Peregrine Semiconductor, 9380 Carroll Park Drive, San Diego, CA 921921, USA.

23. Jaschke, A., M. Tessema, M. Schuhler, and R. Wansch, "Digitally tunable bandpass filter for cognitive radio applications," IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, 338-342, 2012.

24. Ranta, T. and R. Novak, "New tunable technology for mobile-TV antennas," Microwave Journal, Nov. 2008.

25. Gao, L., X. Y. Zhang, B.-J. Hu, and Q. Xue, "Novel multi-stub loaded resonators and their applications to various bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 5, May 2014.
doi:10.1109/TMTT.2014.2314680

26. Zhao, Z., J. Chen, L. Yang, and K. Chen, "Three-pole tunable filters with constant bandwidth using mixed combline and split-ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, Oct. 2014.

27. Chiou, Y.-C. and G. M. Rebeiz, "Tunable 1.55–2.1GHz 4-pole elliptic bandpass filter with bandwidth control and > 50 dB rejection for wireless systems," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 117-124, Jan. 2013.
doi:10.1109/TMTT.2012.2227789

28. Dai, G. L., X. Y. Zhang, C. H. Chan, Q. Xue, and M. Y. Xia, "An investigation of open- and short-ended resonators and their applications to bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2203-2210, Sep. 2009.
doi:10.1109/TMTT.2009.2027173

29. Zhang, X. Y., Q. Xue, C. H. Chan, and B.-J. Hu, "Low-loss frequency-agile bandpass filters with controllable bandwidth and suppressed second harmonic," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 6, 1557-1564, Jun. 2010.
doi:10.1109/TMTT.2010.2048250

30. Huang, X., Q. Feng, L. Zhu, and Q. Xiang, "A constant absolute bandwidth tunable filter using varactor-loaded open-loop resonators," Asia-Pacific Microwave Conference Proceedings 2013, 872-874, 2013.
doi:10.1109/APMC.2013.6694986

31. Chiou, Y. C. and G. M. Rebeiz, "A quasi elliptic function 1.75–2.25 GHz 3-pole bandpass filter with bandwidth control," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 2, 244-249, Feb. 2012.
doi:10.1109/TMTT.2011.2178260