Vol. 64
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-05-10
Omnidirectional Conformal Patch Antenna at S-Band with 3D Printed Technology
By
Progress In Electromagnetics Research C, Vol. 64, 43-50, 2016
Abstract
A conformal patch array antenna with omnidirectional pattern in the azimuth plane at S-band is presented. A theoretical study of the generated ripple in the omnidirectional radiation pattern according to the number of faces that conform the array has been computed. A six-faced regular prism 3D structure has been chosen following a maximum 3 dB ripple criteria in the omnidirectional radiation pattern. A rectangular microstrip patch fed by a microstrip line has been designed as single radiating element. An equal power divider has been designed as feeding network in microstrip technology to feed each radiating element. Several prototypes have been manufactured and measured to validate the theoretical and simulated results. The entire conformal array has been assembled on a hexagonal regular prism manufactured in PolyLactic Acid (PLA) material using a 3D printer. In spite of the complexity of the proposed antenna structure, the used manufacturing processes, such as microstrip and 3D printing, allows to perform a low cost, low weight and compact final antenna. A higher radiated field ripple than the expected one is generated due to small deviations between experimental and theoretical critical parameters such as the feeding network performance or the 3 dB beam-width of the single element radiation pattern. A maximum ripple value of 4 dB has been experimentally obtained in the omnidirectional radiating pattern.
Citation
Paula Paloma Sanchez Dancausa, Jose Luis Masa-Campos, Pablo Sanchez Olivares, and Eduardo Garcia Marin, "Omnidirectional Conformal Patch Antenna at S-Band with 3D Printed Technology," Progress In Electromagnetics Research C, Vol. 64, 43-50, 2016.
doi:10.2528/PIERC16022410
References

1. Knott, P., C. Loker, and S. Algermissen, "Antenna element design for a conformal antenna array demonstrator," IEEE Aerospace Conference, 1-5, Big Sky, MT, 2011.

2. Steyskal, H., "Pattern synthesis for a conformal wing array," IEEE Aerospace Conference Proceedings, Vol. 2, 2-819-2-824, 2002.

3. Yang, P., F. Yang, Z.-P. Nie, B. Li, and X. Tang, "Robust adaptive beamformer using interpolation technique for conformal antenna array," Progress In Electromagnetics Research B, Vol. 23, 215-228, 2010.
doi:10.2528/PIERB10061504

4. Athanasopoulos, N. C., N. K. Uzunoglu, and J. D. Kanellopoulos, "Development of a 10GHz phased array cylindrical antenna system in corporating IF phase processing," Progress In Electromagnetics Research, Vol. 59, 17-38, 2006.
doi:10.2528/PIER05102403

5. Sahnoun, N., I. Messaoudene, T. A. Denidni, and A. Benghalia, "Integrated flexible UWB/Nb antenna conformed on a cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 55, 121-128, 2015.
doi:10.2528/PIERL15061809

6. Wang, Q. and Q.-Q. He, "An arbitrary conformal array pattern synthesis method that include mutual coupling and platform effects," Progress In Electromagnetics Research, Vol. 110, 297-311, 2010.
doi:10.2528/PIER10092204

7. Mandric, V., S. Rupcic, and D. Pilski, "Experimental results of spherical arrays of circular waveguide and microstrip antennas," ELMAR, 2011 Proceedings, 345-351, Zadar, 2011.

8. Shama, A. and S. Dev Gupta, "Design and analysis of rectangular microstrip patch antenna conformal on spherical surface," 2015 International Conference on Signal Processing and Communication (ICSC), 366-369, 2015.
doi:10.1109/ICSPCom.2015.7150678

9. Bhowmik, L. M., C. Armiento, A. Akyurtlu, W. Miniscalco, J. Chirravuri, and C. McCarroll, "Design and analysis of conformal ku-band microstrip patch antenna arrays," 2013 IEEE International Symposium on Phased Array Systems & Technology, 815-820, 2013.
doi:10.1109/ARRAY.2013.6731932

10. Huang, M. D. and S. Y. Tan, "An improved spherical antenna array for wideband phase mode processing," Progress In Electromagnetics Research, Vol. 66, 27-40, 2006.
doi:10.2528/PIER06081101

11. Wang, P., G. Wen, H. Zhang, and Y. Sun, "A wideband conformal end-fire antenna array mounted on a large conducting cylinder," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4857-4861, Sept. 2013.
doi:10.1109/TAP.2013.2259789

12. Masa, J. L., J. M. Serna, and M. Sierra, "Circularly polarized omnidirectional parch array for millimetre application," XIX URSI/COST, 284, Sept. 2004.

13. Zhang, Z., X. Gao, W. Chen, Z. Feng, and M. F. Iskander, "Study of conformal switchable antenna system on cylindrical surface for isotropic coverage," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 776-783, Mar. 2011.
doi:10.1109/TAP.2010.2103041

14. IEEE 802.16 Working Group "IEEE Standard for Local and Metropolitan Area Networks," IEEE, New York, USA, Dec. 2005.

15. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons Inc., 1997.