Vol. 62
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-03-03
Effects of Superstrate Layer on the Resonant Characteristics of Superconducting Rectangular Microstrip Patch Antenna
By
Progress In Electromagnetics Research C, Vol. 62, 157-165, 2016
Abstract
The resonant characteristics of superconducting rectangular microstrip patch antenna with a superstrate layer are investigated using a full-wave spectral analysis in conjunction with the complex resistive boundary condition. The complex surface impedance of superconducting patch is determined using London's equation and the two-fluid model of Gorter and Casimir. Numerical results using the full-wave analysis presented here are in excellent agreement with theoretical and experimental results available in the open literature. Numerical results show that the effect of the superstrate layer on the resonant frequency and half-power bandwidth of the superconducting rectangular patch is stronger than that of the structure without superstrate layer as both the thickness and permittivity of the superstrate increase. Finally, numerical results concerning the effects of the parameters of superstrate-substrate and superconducting patch on the antenna performance are also presented and discussed.
Citation
Sami Bedra, and Tarek Fortaki, "Effects of Superstrate Layer on the Resonant Characteristics of Superconducting Rectangular Microstrip Patch Antenna," Progress In Electromagnetics Research C, Vol. 62, 157-165, 2016.
doi:10.2528/PIERC15122902
References

1. Maity, S. and B. Gupta, "Cavity model analysis of 30˚-60˚-90˚ triangular microstrip antenna," AEU-International Journal of Electronics and Communications, Vol. 69, 923-932, 2015.
doi:10.1016/j.aeue.2015.02.012

2. Singh, A., R. K. Gangwar, and B. K. Kanaujia, "Cavity backed annular ring microstrip antenna loaded with concentric circular patch," 8th European Conference onAntennas and Propagation (EuCAP), 2014, 2155-2158, 2014.
doi:10.1109/EuCAP.2014.6902235

3. Khanna, A., D. K. Srivastava, and J. P. Saini, "Bandwidth enhancement of modified square fractal microstrip patch antenna using gap-coupling," Engineering Science and Technology, Vol. 18, 286-293, 2015.

4. Raval, F., Y. Kosta, and H. Joshi, "Reduced size patch antenna using complementary split ring resonator as defected ground plane," AEU-International Journal of Electronics and Communications, Vol. 69, 1126-1133, 2015.
doi:10.1016/j.aeue.2015.04.013

5. Khan, Q. U. and M. B. Ihsan, "Higher order mode excitation for high gain microstrip patch antenna," AEU-International Journal of Electronics and Communications, Vol. 68, 1073-1077, 2014.
doi:10.1016/j.aeue.2014.05.009

6. Lamine Tounsi, M. and M. C. Yagoub, "Efficient characterization of EMC shielding in anisotropic high-Tc superconducting devices for industrial applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 22, 116-123, 2012.
doi:10.1002/mmce.20590

7. Benkouda, S., M. Amir, T. Fortaki, and A. Benghalia, "Dual-frequency behavior of stacked high Tc superconducting microstrip patches," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, 1350-1366, 2011.
doi:10.1007/s10762-011-9842-1

8. Fortaki, T., A. Mounir, S. Benkouda, and A. Benghalia, "Study of high Tc superconducting microstrip antenna," PIERS Online, Vol. 5, No. 4, 346-349, 2009.
doi:10.2529/PIERS080905130151

9. El-Ghazaly, S. M., R. B. Hammond, and T. Itoh, "Analysis of superconducting microwave structures: Application to microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 499-508, 1992.
doi:10.1109/22.121725

10. Benmeddour, F., C. Dumond, F. Benabdelaziz, and F. Bouttout, "Improving the performances of a high Tc superconducting circuslar microstrip antenna with multilayered configuration and anisotropic dielectrics," Progress In Electromagnetics Research C, Vol. 18, 169-183, 2011.
doi:10.2528/PIERC10102703

11. Chebbara, F., S. Benkouda, and T. Fortaki, "Fourier transform domain analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 31, 821-832, 2010.
doi:10.1007/s10762-010-9641-0

12. Bedra, S., T. Fortaki, A. Messai, and R. Bedra, "Spectral domain analysis of resonant characteristics of high Tc superconducting rectangular microstrip patch printed on isotropic or uniaxial anisotropic substrates," Wireless Personal Communications, Vol. 86, 495-511, 2016.
doi:10.1007/s11277-015-2941-x

13. Fortaki, T., L. Djouane, F. Chebara, and A. Benghalia, "Radiation of a rectangular microstrip patch antenna covered with a dielectric layer," International Journal of Electronics, Vol. 95, 989-998, 2008.
doi:10.1080/00207210802312070

14. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator," Progress In Electromagnetics Research B, Vol. 49, 319-337, 2013.
doi:10.2528/PIERB13012115

15. Biswas, M. and A. Mandal, "Experimental and theoretical investigation of resonance and radiation characteristics of superstrate loaded rectangular patch antenna," Microwave and Optical Technology Letters, Vol. 57, 791-799, 2015.
doi:10.1002/mop.28961

16. Barkat, O. and A. Benghalia, "Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxial anisotropic media," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, 1053-1066, 2009.
doi:10.1007/s10762-009-9526-2

17. Bedra, S. and T. Fortaki, "Hankel transform domain analysis of covered circular microstrip patch printed on an anisotropic dielectric layer," Journal of Computational Electronics, Vol. 14, 747-753, 2015.
doi:10.1007/s10825-015-0708-y

18. Benkouda, S., A. Messai, M. Amir, S. Bedra, and T. Fortaki, "Characteristics of a high Tc superconducting rectangular microstrip patch on uniaxially anisotropic substrate," Physica C: Superconductivity, Vol. 502, 70-75, 2014.
doi:10.1016/j.physc.2014.04.015

19. Da Silva, S., A. d'Assuncao, and J. Oliveira, "Analysis of high Tc superconducting microstrip antennas and arrays," International Conference in Microwave and Optoelectronics 1999, SBMO/IEEE MTT-S, APS and LEOS-IMOC'99, 243-246, 1999.
doi:10.1109/IMOC.1999.867100

20. Bahl, I. J., P. Bhartia, and S. S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 30, 314-318, 1982.
doi:10.1109/TAP.1982.1142766

21. Richard, M. A., K. B. Bhasin, and P. C. Claspy, "Superconducting microstrip antennas: An experimental comparison of two feeding methods," IEEE Transactions on Antennas and Propagation, Vol. 41, 967-974, 1993.
doi:10.1109/8.237630

22. Bouttout, F., F. Benabdelaziz, T. Fortaki, and D. Khedrouche, "Resonant frequency and bandwidth of a superstrate-loaded rectangular patch on a uniaxial anisotropic substrate," Communications in Numerical Methods in Engineering, Vol. 16, 459-473, 2000.
doi:10.1002/1099-0887(200007)16:7<459::AID-CNM343>3.0.CO;2-7