Vol. 60
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-12-21
A Miniaturized Lotus Shaped Microstrip Antenna Loaded with EBG Structures for High Gain-Bandwidth Product Applications
By
Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015
Abstract
In this paper, the design of a printed circuit antenna based on lotus flower patch of a miniaturized profile is proposed. The antenna consists of three layers including a patch and a ground plane of a thin copper layer separated by a Roger RT/duroid®5880 substrate for high gain-bandwidth product applications including the portable biomedical devices. The patch structure is patterned with triangular defects to provide a fractal structure. Nevertheless, the ground plane is defected with Electromagnetic Band Gap (EBG) structures. The antenna is found to show a first resonant mode around 3 GHz, while the other frequency modes are obtained around 4.2 GHz and 6 GHz which are below -10 dB. Moreover, the antenna operates over the frequency range from 7.8 GHz up to 15 GHz with a bore-sight gain varing from 4 dBi up to 6 dBi when operates in free-space environments. The antenna size is reduced to a 32 mm×28 mm×0.5 mm using shorting plates on the substrate edges. The antenna performance characteristics are examined using CST and HFSS commercial software packages, which are based on the Finite Integration Technique (FIT) and the Finite Element Method (FEM), respectively. Finally, the antenna performance is tested experimentally for both S11 spectrum and radiation patterns to show an excellent matching with the obtained numerical results.
Citation
Taha Ahmed Elwi, Ahmed Imad Imran, and Yahiea Alnaiemy, "A Miniaturized Lotus Shaped Microstrip Antenna Loaded with EBG Structures for High Gain-Bandwidth Product Applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804
References

1. Federal Communications Commission "First report and order, revision of Part 15 of Commission's rule regarding ultra-wideband transmission system,", FCC 02-48, Washington, DC, Apr. 2002.
doi:10.1002/0471221112

2. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, 2002.
doi:10.1002/(SICI)1098-2760(19990905)22:5<348::AID-MOP16>3.0.CO;2-V

3. Wu, C. K. and K. L. Wong, "Broadband microstrip antenna with directly coupled and gap-coupled parasitic patches," Microw. Opt. Technol. Lett., Vol. 22, No. 5, 348-349, Oct. 1999.
doi:10.1049/el:19950950

4. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., Vol. 31, No. 3, 1310-1311, Sep. 1995.
doi:10.1109/8.951507

5. Wong, K. L. and W. H. Hsu, "A broadband rectangular patch antenna with a pair of wide slits," IEEE Trans. Antennas Propag., Vol. 49, 1345-1347, Jan. 2001.
doi:10.1002/mop.23240

6. Lao, J., R. Jin, J. Geng, and Q. Wu, "An ultra-wideband microstrip elliptical slot antenna exited by a circular patch," Microw. Opt. Technol. Lett., Vol. 50, No. 4, 845-846, Aug. 2008.
doi:10.1109/LAWP.2006.878882

7. Angelopoulos, E. S., A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, and K. Dangakis, "Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 294-297, Jun. 2006.
doi:10.1049/el:20063988

8. Denidni, T. A. and M. A. Habib, "Broadband printed CPW-fed circular slot antenna," Electron. Lett., Vol. 42, No. 3, 135-136, Dec. 2006.
doi:10.1109/LAWP.2007.891522

9. Azenui, N. C. and H. Y. D. Yang, "A printed crescent patch antenna for ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 113-116, Apr. 2007.

10. Sudarsan, D., Y. K. Choukiker, S. K. Behera, and O. K. Kennedy, "Compact lotus shape planar microstrip antenna for UWB applications," App. Electromagnetic Conf., 18-20, Dec. 2013.
doi:10.1103/PhysRevLett.89.213902

11. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902: 1-4, 2002.

12. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 42, 046608-1, Oct. 2004.
doi:10.1007/s00339-006-3820-9

13. Wu, Q., P. Pan, F. Y. Meng, L. W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A Materials Science and Processing, Vol. 87, No. 2, 151-156, Feb. 2007.

14. Xiao, Z. and H. Xu, "Low refractive metamaterials for gain enhancement of horn antenna," Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, 225-232, Jul. 2009.
doi:10.1007/s10762-010-9712-2

15. Kim, D. and J. Choi, "Analysis of antenna gain enhancement with a new planar metamaterial superstrate: An effective medium and a Fabry-Perot resonance approach," Journal of Infrared Millimeter and Terahertz Waves, Vol. 31, No. 11, 1289-1303, Aug. 2010.

16. Hrabar, S., D. Bonefacic, and D. Muha, "ENZ-based shortened horn antenna: An experimental study," Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, United States, Apr. 2008.
doi:10.1002/mop.24469

17. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1973-1976, Sep. 2009.

18. Pipes, L. A. and L. R. Harvill, Applied Mathematics for Engineers and Physicists, 3rd Dover Books on Mathematics, Jun. 2014.
doi:10.1002/mop.28261

19. Hou, Q. W., Y. Y. Su, and X. P. Zhao, "A high gain patch antenna based PN zero permeability metamaterial," Microw. Opt. Technol. Lett., Vol. 56, No. 5, 1065-1069, May 2014.
doi:10.2528/PIER12082112

20. Meng, F.-Y., Y.-L. Lyu, K. Zhang, Q. Wu, and J. L.-W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

21. Ibrahim, O. A., T. A. Elwi, and N. E. Islam, "Gain enhancement of microstrip antennas using UC-PBG layer," Canadian Journal on Electrical and Electronics Engineering, Vol. 3, No. 9, 480-483, ID: EEE-1211-016, Nov. 2012.
doi:10.1016/j.aeue.2014.03.013

22. Elwi, T. A., Z. Abbas, M. A. Elwi, and M. M. Hamed, "On the performance of the 2D planar metamaterial structure," International Journal of Electronics and Communications, Vol. 68, No. 9, 846-850, Sep. 2014.

23. Pipes, L. A. and L. R. Harvill, Applied Mathematics for Engineers and Physicists, 3rd Dover Books on Mathematics, 2014.
doi:10.2528/PIERL12070409

24. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetics Research Letters, Vol. 34, 1-8, 2012.
doi:10.2528/PIER11072710

25. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

26. Valagiannopoulos, C. A., "Electromagnetic propagation into parallel-plate waveguide in the presence of a Skew metallic surface," Electromagnetics, Vol. 31, 593-605, Oct. 2011.