1. Federal Communications Commission "First report and order, revision of Part 15 of Commission's rule regarding ultra-wideband transmission system,", FCC 02-48, Washington, DC, Apr. 2002.
doi:10.1002/0471221112
2. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, 2002.
doi:10.1002/(SICI)1098-2760(19990905)22:5<348::AID-MOP16>3.0.CO;2-V
3. Wu, C. K. and K. L. Wong, "Broadband microstrip antenna with directly coupled and gap-coupled parasitic patches," Microw. Opt. Technol. Lett., Vol. 22, No. 5, 348-349, Oct. 1999.
doi:10.1049/el:19950950
4. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., Vol. 31, No. 3, 1310-1311, Sep. 1995.
doi:10.1109/8.951507
5. Wong, K. L. and W. H. Hsu, "A broadband rectangular patch antenna with a pair of wide slits," IEEE Trans. Antennas Propag., Vol. 49, 1345-1347, Jan. 2001.
doi:10.1002/mop.23240
6. Lao, J., R. Jin, J. Geng, and Q. Wu, "An ultra-wideband microstrip elliptical slot antenna exited by a circular patch," Microw. Opt. Technol. Lett., Vol. 50, No. 4, 845-846, Aug. 2008.
doi:10.1109/LAWP.2006.878882
7. Angelopoulos, E. S., A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, and K. Dangakis, "Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 294-297, Jun. 2006.
doi:10.1049/el:20063988
8. Denidni, T. A. and M. A. Habib, "Broadband printed CPW-fed circular slot antenna," Electron. Lett., Vol. 42, No. 3, 135-136, Dec. 2006.
doi:10.1109/LAWP.2007.891522
9. Azenui, N. C. and H. Y. D. Yang, "A printed crescent patch antenna for ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 113-116, Apr. 2007.
10. Sudarsan, D., Y. K. Choukiker, S. K. Behera, and O. K. Kennedy, "Compact lotus shape planar microstrip antenna for UWB applications," App. Electromagnetic Conf., 18-20, Dec. 2013.
doi:10.1103/PhysRevLett.89.213902
11. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902: 1-4, 2002.
12. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 42, 046608-1, Oct. 2004.
doi:10.1007/s00339-006-3820-9
13. Wu, Q., P. Pan, F. Y. Meng, L. W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A Materials Science and Processing, Vol. 87, No. 2, 151-156, Feb. 2007.
14. Xiao, Z. and H. Xu, "Low refractive metamaterials for gain enhancement of horn antenna," Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, 225-232, Jul. 2009.
doi:10.1007/s10762-010-9712-2
15. Kim, D. and J. Choi, "Analysis of antenna gain enhancement with a new planar metamaterial superstrate: An effective medium and a Fabry-Perot resonance approach," Journal of Infrared Millimeter and Terahertz Waves, Vol. 31, No. 11, 1289-1303, Aug. 2010.
16. Hrabar, S., D. Bonefacic, and D. Muha, "ENZ-based shortened horn antenna: An experimental study," Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, United States, Apr. 2008.
doi:10.1002/mop.24469
17. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1973-1976, Sep. 2009.
18. Pipes, L. A. and L. R. Harvill, Applied Mathematics for Engineers and Physicists, 3rd Dover Books on Mathematics, Jun. 2014.
doi:10.1002/mop.28261
19. Hou, Q. W., Y. Y. Su, and X. P. Zhao, "A high gain patch antenna based PN zero permeability metamaterial," Microw. Opt. Technol. Lett., Vol. 56, No. 5, 1065-1069, May 2014.
doi:10.2528/PIER12082112
20. Meng, F.-Y., Y.-L. Lyu, K. Zhang, Q. Wu, and J. L.-W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.
21. Ibrahim, O. A., T. A. Elwi, and N. E. Islam, "Gain enhancement of microstrip antennas using UC-PBG layer," Canadian Journal on Electrical and Electronics Engineering, Vol. 3, No. 9, 480-483, ID: EEE-1211-016, Nov. 2012.
doi:10.1016/j.aeue.2014.03.013
22. Elwi, T. A., Z. Abbas, M. A. Elwi, and M. M. Hamed, "On the performance of the 2D planar metamaterial structure," International Journal of Electronics and Communications, Vol. 68, No. 9, 846-850, Sep. 2014.
23. Pipes, L. A. and L. R. Harvill, Applied Mathematics for Engineers and Physicists, 3rd Dover Books on Mathematics, 2014.
doi:10.2528/PIERL12070409
24. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetics Research Letters, Vol. 34, 1-8, 2012.
doi:10.2528/PIER11072710
25. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
26. Valagiannopoulos, C. A., "Electromagnetic propagation into parallel-plate waveguide in the presence of a Skew metallic surface," Electromagnetics, Vol. 31, 593-605, Oct. 2011.