1. Lin, J. C., "On microwave-induced hearing sensation," IEEE Trans. Microw. Theory Techn., Vol. 25, 605-613, 1977.
doi:10.1109/TMTT.1977.1129167
2. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002
3. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604
4. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Trans. Med. Imag., Vol. 55, No. 12, 2792-2800, 2008.
5. Wang, L. V., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Rev. Sci. Instrum., Vol. 70, No. 9, 3744-3748, 1999.
doi:10.1063/1.1149986
6. Gao, F., Y. Zheng, X. Feng, and C. D. Ohl, "Thermoacoustic resonance effect and circuit modelling of biological tissue," Appl. Phys. Lett., Vol. 102, No. 6, 063702, 2013.
doi:10.1063/1.4791791
7. Qin, T., X.Wang, Y. Qin, P. Ingram, G.-B.Wan, R. S. Witte, and H. Xin, "Experimental validation of a numerical model for thermoacoustic imaging applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1235-1238, 2015.
doi:10.1109/LAWP.2014.2384022
8. Ku, G. and L. V. Wang, "Scanning thermoacoustic tomography in biological tissue," Med. Phys., Vol. 27, 1195-1202, 2000.
doi:10.1118/1.598984
9. Ku, G. and L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast," Med. Phys., Vol. 28, 4-10, 2001.
doi:10.1118/1.1333409
10. Wang, X., D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Witte, and H. Xin, "Impact of microwave pulses on thermoacoustic imaging applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1634-1637, 2012.
doi:10.1109/LAWP.2013.2237743
11. Lou, C., L. Nie, and D. Xu, "Effect of excitation pulse width on thermoacoustic signal characteristics and the corresponding algorithm for optimization of imaging resolution," J. Appl. Phys., Vol. 110, 083101, 2011.
doi:10.1063/1.3651636
12. Lou, C., S. Yang, Z. Ji, Q. Chen, and D. Xing, "Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution," Phys. Rev. Lett., Vol. 109, 218101, 2012.
doi:10.1103/PhysRevLett.109.218101
13. Diebold, G., T. Sun, and M. Khan, "Photoacoustic monopole radiation in one, two, and three dimensions," Phys. Rev. Lett., Vol. 67, No. 24, 3384, 1991.
doi:10.1103/PhysRevLett.67.3384
14. Omar, M., J. Gateau, and V. Ntziachristos, "Raster-scan optoacoustic mesoscopy in the 25-125 MHz range," Opt. Lett., Vol. 38, No. 14, 2472-2474, 2013.
doi:10.1364/OL.38.002472
15. Razansky, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Med. Phys., Vol. 37, 4602-4607, 2010.
doi:10.1118/1.3467756
16. Rosenthal, A., D. Razansky, and V. Ntziachristos, "Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography," IEEE Trans. Med. Imag., Vol. 29, 1275-1285, 2010.
doi:10.1109/TMI.2010.2044584
17. Xu, M. and L. V. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imag., Vol. 21, 814-822, 2002.
18. Guy, A. W., "Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models," IEEE Trans. Microw. Theory Techn., Vol. 16, No. 2, 205-214, 1971.
doi:10.1109/TMTT.1968.1127484
19. Song, J., Z. Zhao, J. Wang, X. Zhu, J. Wu, Z. Nie, et al. "Evaluation of contrast enhancement by Carbon Nanotubes for microwave induced thermo-acoustic tomography," IEEE Trans. Biomed. Eng., Vol. 62, 939-938, 2014.
20. Zhao, Z., J. Song, X. Zhu, J. Wang, J. Wu, Y. Liu, Z.-P. Nie, and Q. H. Liu, "System development of microwave induced thermo-acoustic tomography and experiments on breast tumor," Progress In Electromagnetics Research, Vol. 134, 323-336, 2013.
doi:10.2528/PIER12101604
21. Song, J., Z. Zhao, J. Wang, X. Zhu, J. Wu, Z.-P. Nie, and Q. H. Liu, "An integrated simulation approach and experimental research on microwave induced thermo-acoustic tomography system," Progress In Electromagnetics Research, Vol. 140, 385-400, 2013.
doi:10.2528/PIER13041704
22. Hristova, Y., P. Kuchment, and L. Nguyen, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inverse Problems, Vol. 24, 055006, 2008.
doi:10.1088/0266-5611/24/5/055006
23. Zheng, W., Z. Zhao, Z.-P. Nie, and Q. H. Liu, "Evaluation of TRM in the complex through wall environment," Progress In Electromagnetics Research, Vol. 90, 235-254, 2009.
doi:10.2528/PIER09011003
24. Deán-Ben, X. L., D. Razansky, and V. Ntziachristos, "The effects of acoustic attenuation in optoacoustic signals," Phys. Med. Biol., Vol. 56, No. 18, 6129, 2011.
doi:10.1088/0031-9155/56/18/021
25. Xu, Y. and L. V. Wang, "Effects of acoustic heterogeneity in breast thermoacoustic tomography," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 50, No. 9, 1134-1146, 2003.
doi:10.1109/TUFFC.2003.1235325