Vol. 61
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-01-06
Flexible Antennas Based on Natural Rubber
By
Progress In Electromagnetics Research C, Vol. 61, 75-90, 2016
Abstract
Flexible substrates have been increasingly studied in recent years. This paper proposes natural rubber as a new substrate material for flexible antennas. In our work, prototype antennas were built using rubber formulated with different filler contents. Carbon black was used as the filler where its amount was varied to yield different dielectric properties. Prototype inset-feed microstrip patch antennas with outer dimensions 7.52 mm × 10.607 mm × 1.7 mm and copper as its conducting material were fabricated to operate at 2.45 GHz. The prototypes were measured and their performance analyzed in terms of the effects of filler content on Q, return loss and bending effects on their gain and radiation characteristics. The return loss and gain were found to be comparable to those built on existing synthetic substrates, but these new antennas offer an added feature of frequency-tunability by varying the filler content. Under bending conditions, these new antennas were also found to perform better than existing designs, showing less changes in their gain, frequency shift and beamwidth, in addition to less impedance mismatch when bent.
Citation
Zaiki Awang, Nur Adyani Mohd Affendi, Nur Aimi Liyana Alias, and Nur Azlin Mohd Razali, "Flexible Antennas Based on Natural Rubber," Progress In Electromagnetics Research C, Vol. 61, 75-90, 2016.
doi:10.2528/PIERC15092501
References

1. Liyakath, R. A., A. Takshi, and G. Mumcu, "Multilayer stretchable conductors on polymer substrates for conformal and reconfigurable antennas," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 603-606, 2013.
doi:10.1109/LAWP.2013.2260123

2. Hayes, G. J., A. Qusba, M. D. Dickey, and G. Lazzi, "Flexible liquid metal alloy (EGaIn) microstrip patch antenna," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2151-2156, May 2012.
doi:10.1109/TAP.2012.2189698

3. Hazra, R., C. K. Ghosh, and S. K. Parui, "Effect of different semi conductive substrate materials on a P-shaped wearable antenna," Int. J. of Adv. Res. in Comp. and Comm. Eng. (IJARCCE), Vol. 2, No. 8, 3071-3074, 2013.

4. Xi, J., H. Zhu, and T. T. Ye, "Exploration of printing-friendly RFID antenna designs on paper substrates," IEEE Int. Conf. on RFID, 38-44, April 2011.

5. Trajkovikj, J., J. F. Zurcher, and A. K. Skrivervik, "Soft and flexible antennas on permittivity adjustable PDMS substrates," Loughborough Ant. and Prop. Conf., 1-4, November 2012.

6. Gunasekaran, S., R. K. Natarajan, A. Kala, and R. Jagannathan, "Dielectric studies of some rubber materials at microwave frequencie," Ind. J. Pure and APhys., Vol. 46, 73-737, October 2008.

7. Ganchev, S. I., J. Bhattacharyya, S. Bakhtiari, N. Qaddoumi, D. Brandenburg, and R. Zaughi, "Microwave diagnosis of rubber compounds," IEEE Trans. on Microw. Theory and Tech., Vol. 42, No. 1, 18-24, January 1994.
doi:10.1109/22.265523

8. Al-Hartomy, O. A., F. Al-Solamy, A. Al-Ghamdi, N. Dishovsky, V. Iliev, and F. El-Tantawy, "Dielectric and microwave properties of siloxane rubber/carbon black nano-composites and their correlatio," Int. J. Polymer Sc., Vol. 2011, 2011.

9. Oliveira, F. A., N. Alves, J. A. Giacometti, C. J. L. Constantino, L. H. C. Mattoso, A. M. O. A. Balan, and A. E. Job, "Study of the thermomechanical and electrical properties of conducting composites containing natural rubber and carbon black," J. Appl. Polym. Sci., Vol. 106, No. 2, 1001-1006, 2007.
doi:10.1002/app.26689

10. Ohira, K., "Development of an antenna material based on rubber that has flexibility and high impact resistance," NTN Tech. Rev., No. 76, 2008.

11. Alias, N. A. L., N. A. M. Affendi, Z. Awang, M. T. Ali, and A. Samsuri, "Preliminary studies on the use of natural rubber in the design of flexible microstrip antennas," 2013 IEEE Int. RF Microw. Conf., 454-459, Penang, December 2013.
doi:10.1109/RFM.2013.6757305

12. Affendi, N. A.M., N. A. L. Alias, Z. Awang, M. T. Ali, and A. Samsuri, "Microwave non-destructing testing of rubber at X-band," 2013 IEEE Int. RF Microw. Conf., 333-337, Penang, December 2013.
doi:10.1109/RFM.2013.6757279

13. Basics of Measuring the Dielectric Properties of Materials, Keysight Technologies ANote, Lit. No. 5989-2589EN, April 27, 2015.

14. Balanis, C. A., "Microstrip antenna," Antenna Theory: Analysis and Design, 2nd edition, Chap. 14, 737, 760-762, John Wiley & Sons Ltd, 1997.

15. Carver, K. R. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, January 1981.
doi:10.1109/TAP.1981.1142523

16. Laheurte, J., "Electrical equivalent circuit of a printed antenna," Compact Antennas for Wireless Communications and Terminals, 1st edition, Chap. 5, 62-68, John Wiley & Sons Ltd, 2011.

17. Chen, Z. N. and M. Y. W. Chia, "Planar radiators," Broadband Planar Antennas, 1st edition, Chap. 1, 3-31, John Wiley & Sons Ltd, 2006.

18. Baker-Jarvis, J., M. D. Janezic, and D. C. DeGroot, "High-frequency dielectric measurement," IEEE Trans. Instrum. Meas., Vol. 13, No. 2, 24-31, 2010.
doi:10.1109/MIM.2010.5438334

19. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas, Wiley-IEEE Press, 1995.
doi:10.1109/9780470545270

20. Mäntysalo, M. and P. Mansikkamäki, "An inkjet-deposited antenna for 2.4 GHz applications," AEU - Int. J. Electron. Commun., Vol. 63, No. 1, 31-35, 2009.
doi:10.1016/j.aeue.2007.10.004

21. Sankaralingam, S. and B. Gupta, "Development of textile antennas for body wearable applications and investigations on their performance under bent conditions," Progress In Electromagnetics Research B, Vol. 22, 53-71, 2010.
doi:10.2528/PIERB10032705

22. Boeykens, F., L. Vallozzi, and H. Rogier, "Cylindrical bending of deformable textile rectangular patch antennas," Int. J. of Ant. and Prop., 1-11, 2012.

23. Reffaee, A. S. A., D. E. El Nashar, S. L. Abd-El-Messieh, and K. N. Abd-El Nour, "Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold," Int. J. of Mat. in Eng. Applications, Vol. 30, No. 9, 3760-3769, 2009.

24. Krowne, C. M., "Cylindrical rectangular microstrip antenna," IEEE Trans. Antennas Propag., Vol. 31, No. 1, 194-199, 1983.
doi:10.1109/TAP.1983.1143000

25. Bai, Q. and R. Langley, "Textile PIFA antenna bending," Loughborough Ant. and Prop. Conf., 1-4, 2011.
doi:10.1109/LAPC.2011.6114061

26. Kumar, V., "Radiation pattern of omnidirectional conformal microstrip patch antenna on cylindrical surface," Int. J. of Emerging Tech. and Adv. Eng., Vol. 3, 483-487, February 2013.

27. Katehi, P. B. and N. G. Alexopoulos, "On the effect of substrate thickness and permittivity on printed circuit dipole properties," IEEE Trans. Antennas Propag., Vol. 31, No. 1, 34-38, January 1983.
doi:10.1109/TAP.1983.1143003

28. Anaekwe, I., et al. "The effect of curvature adaptation on 2.45 GHz rectangular patch antennas," IEEE TENCON Spring Conf., 123-127, April 2013.

29. Mansor, M. M., et al. "A 2.45 GHz wearable antenna using conductive graphene and polymer substrate," Int. Sym. on Tech. Management and Emerging Tech. (ISTMET), 29-32, May 2014.
doi:10.1109/ISTMET.2014.6936472

30. Kellomaki, T., et al. "Bendable plaster antenna for 2.45 GHz applications," Loughborough Ant. and Prop. Conf., 453-456, November 2009.