Vol. 60
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-11-23
Low Profile UHF/VHF Metamaterial Backed Circularly Polarized Antenna Structure
By
Progress In Electromagnetics Research C, Vol. 60, 11-20, 2015
Abstract
In this work, a low-profile metamaterial backed planar antenna structure designed to work in the UHF/VHF range is presented. The antenna has right-hand circular polarization. It is ideal for satellite-based communications and radar systems. An artificial magnetic conductor was designed using a metamaterial composed of a split ring resonators to reduce the size of the planar antenna and ground plane system. The proposed artificial magnetic conductor has more confined surface waves at the reflecting plane than previous designs and is suitable for circular polarization. Through numerical simulations, performance characteristics including return-loss, and realized gain of the antenna systems are calculated and analyzed in the VHF range. The proposed antenna system is narrowband and is linearly scalable in the range of 100 MHz-1 GHz.
Citation
Taulant Rexhepi, Igor Bendoym, Ada-Simona Popescu, Andrii Golovin, Johnny Daniels, Kate Duncan, and David Crouse, "Low Profile UHF/VHF Metamaterial Backed Circularly Polarized Antenna Structure," Progress In Electromagnetics Research C, Vol. 60, 11-20, 2015.
doi:10.2528/PIERC15090906
References

1. Dan, S., et al. "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

2. Sievenpiper, D. F., J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, "Two-dimensional beam steering using an electrically tunable impedance surface," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2713-2722, 2003.
doi:10.1109/TAP.2003.817558

3. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "A high-impedance ground plane applied to a cellphone handset geometry," IEEE Trans. Microwave Theory and Tech., Vol. 49, No. 7, 1262-1265, 2001.
doi:10.1109/22.932245

4. Costa, F., et al., "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 676-680, 2008.
doi:10.1109/LAWP.2008.2006070

5. Suh, S.-Y., et al. "Evolution of broadband antennas from monopole disc to dual-polarized antenna," IEEE Antennas and Propagation Society International Symposium, 2006.

6. Liu, Y., et al. "A novel dual-polarized dipole antenna with compact size for wireless communication," Progress In Electromagnetics Research, Vol. 40, 217-227, 2013.
doi:10.2528/PIERC13041610

7. Suh, S.-Y., et al. "An novel broadband antenna, the low profile dipole planar inverted cone antenna (LPdiPICA)," IEEE Antennas and Propagation Society International Symposium, 2004.

8. Suh, S.-Y., et al. "A novel printed dual polarized broadband antenna-the fourclover antenna," Proceedings of ISAP'04, Sendai, Japan, 2004.

9. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., New Jersey, Wiley, 2005.

10. Oh, S.-S. and L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave and Optical Technology Letters, Vol. 48, No. 2, 329-334, 2006.
doi:10.1002/mop.21341

11. Huang, Y., et al. "Enhancement of radiation along the ground plane from a horizontal dipole located close to it," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 294-297, 2008.
doi:10.1109/LAWP.2008.922141

12. Kärkkäinen, M. and P. Ikonen, "Patch antenna with stacked split-ring resonators as an artificial magneto-dielectric substrate," Microwave and Optical Technology Letters, Vol. 46, No. 6, 554-556, 2005.
doi:10.1002/mop.21048

13. Zhu, S., K. L. Ford, A. Tennant, and R. J. Langley, "SRR driven miniaturized dipole antenna with loaded AMC surface," ESA Conference 2010, [Online]. Available: http://utopia.duth.gr/~iaitidis/ESA%20conference%202010/Papers/session%2011/FCXNL-10C09-1982541-1-1982541zhu.pdf.

14. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Trans. Antennas and Propagation, Vol. 53, No. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534

15. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artficial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701

16. Ayad, H., et al. "Performances of low profile dipole antenna AMC-based surface using metamaterials structures," 2012 IEEE 19th International Conference on Telecommunications (ICT), 2012.

17. Baracco, J.-M., L. Salghetti-Drioli, and P. de Maagt, "AMC low profile wideband reference antenna for GPS and GALILEO systems," IEEE Trans. Antennas and Propagation, Vol. 56, No. 8, 2540-2547, 2008.
doi:10.1109/TAP.2008.927547

18. Carrubba, E., A. Monorchio, and G. Manara, "Artificial magnetic surface for circularly polarized antennas," IEEE Antennas and Propagation Society International Symposium, 2009, APSURSI'09, 1-4, 2009.
doi:10.1109/APS.2009.5171631

19. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas and Propagation, Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

20. Shen, X., et al. "Polarization-independent wide-angle triple-band metamaterial absorber," Optics Express, Vol. 19, No. 10, 9401-9407, 2011.
doi:10.1364/OE.19.009401

21. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

22. "Dual-layer EBG structures for low profile bent antenna," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.

23. Li, Y., et al. "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

24. Balanis, C., Advanced Engineering, Electromagnetics, Analysis, and Design, 2nd Ed., Wiley, 2012.

25. Costa, F., et al., "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 676-680, 2008.
doi:10.1109/LAWP.2008.2006070

26. Gregoire, D. J., C. R. White, and J. S. Colburn, "Wideband artificial magnetic conductors loaded with non-Foster nega-tive inductors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1586-1589, 2011.
doi:10.1109/LAWP.2011.2181937

27. Murakami, Y., T. Hori, and M. Fujimoto, "Optimum reflector configuration for dipole antenna by using artificial magnetic conductor," IEEE 2013 International Workshop on Antenna Technology (iWAT), 2013.

28. Simovski, C. R., P. de Maagt, and I. V. Melchako-va, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Trans. Antennas and Propagation, Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/TAP.2004.842598