1. Dan, S., et al. "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001
2. Sievenpiper, D. F., J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, "Two-dimensional beam steering using an electrically tunable impedance surface," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2713-2722, 2003.
doi:10.1109/TAP.2003.817558
3. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "A high-impedance ground plane applied to a cellphone handset geometry," IEEE Trans. Microwave Theory and Tech., Vol. 49, No. 7, 1262-1265, 2001.
doi:10.1109/22.932245
4. Costa, F., et al., "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 676-680, 2008.
doi:10.1109/LAWP.2008.2006070
5. Suh, S.-Y., et al. "Evolution of broadband antennas from monopole disc to dual-polarized antenna," IEEE Antennas and Propagation Society International Symposium, 2006.
6. Liu, Y., et al. "A novel dual-polarized dipole antenna with compact size for wireless communication," Progress In Electromagnetics Research, Vol. 40, 217-227, 2013.
doi:10.2528/PIERC13041610
7. Suh, S.-Y., et al. "An novel broadband antenna, the low profile dipole planar inverted cone antenna (LPdiPICA)," IEEE Antennas and Propagation Society International Symposium, 2004.
8. Suh, S.-Y., et al. "A novel printed dual polarized broadband antenna-the fourclover antenna," Proceedings of ISAP'04, Sendai, Japan, 2004.
9. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., New Jersey, Wiley, 2005.
10. Oh, S.-S. and L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave and Optical Technology Letters, Vol. 48, No. 2, 329-334, 2006.
doi:10.1002/mop.21341
11. Huang, Y., et al. "Enhancement of radiation along the ground plane from a horizontal dipole located close to it," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 294-297, 2008.
doi:10.1109/LAWP.2008.922141
12. Kärkkäinen, M. and P. Ikonen, "Patch antenna with stacked split-ring resonators as an artificial magneto-dielectric substrate," Microwave and Optical Technology Letters, Vol. 46, No. 6, 554-556, 2005.
doi:10.1002/mop.21048
13. Zhu, S., K. L. Ford, A. Tennant, and R. J. Langley, "SRR driven miniaturized dipole antenna with loaded AMC surface," ESA Conference 2010, [Online]. Available: http://utopia.duth.gr/~iaitidis/ESA%20conference%202010/Papers/session%2011/FCXNL-10C09-1982541-1-1982541zhu.pdf.
14. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Trans. Antennas and Propagation, Vol. 53, No. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534
15. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artficial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701
16. Ayad, H., et al. "Performances of low profile dipole antenna AMC-based surface using metamaterials structures," 2012 IEEE 19th International Conference on Telecommunications (ICT), 2012.
17. Baracco, J.-M., L. Salghetti-Drioli, and P. de Maagt, "AMC low profile wideband reference antenna for GPS and GALILEO systems," IEEE Trans. Antennas and Propagation, Vol. 56, No. 8, 2540-2547, 2008.
doi:10.1109/TAP.2008.927547
18. Carrubba, E., A. Monorchio, and G. Manara, "Artificial magnetic surface for circularly polarized antennas," IEEE Antennas and Propagation Society International Symposium, 2009, APSURSI'09, 1-4, 2009.
doi:10.1109/APS.2009.5171631
19. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas and Propagation, Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950
20. Shen, X., et al. "Polarization-independent wide-angle triple-band metamaterial absorber," Optics Express, Vol. 19, No. 10, 9401-9407, 2011.
doi:10.1364/OE.19.009401
21. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329
22. "Dual-layer EBG structures for low profile bent antenna," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.
23. Li, Y., et al. "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322
24. Balanis, C., Advanced Engineering, Electromagnetics, Analysis, and Design, 2nd Ed., Wiley, 2012.
25. Costa, F., et al., "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 676-680, 2008.
doi:10.1109/LAWP.2008.2006070
26. Gregoire, D. J., C. R. White, and J. S. Colburn, "Wideband artificial magnetic conductors loaded with non-Foster nega-tive inductors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1586-1589, 2011.
doi:10.1109/LAWP.2011.2181937
27. Murakami, Y., T. Hori, and M. Fujimoto, "Optimum reflector configuration for dipole antenna by using artificial magnetic conductor," IEEE 2013 International Workshop on Antenna Technology (iWAT), 2013.
28. Simovski, C. R., P. de Maagt, and I. V. Melchako-va, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Trans. Antennas and Propagation, Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/TAP.2004.842598