Vol. 61
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-12-29
Common-Mode Suppression Design for Gigahertz Differential Signals Based on C-Slotline
By
Progress In Electromagnetics Research C, Vol. 61, 17-26, 2016
Abstract
For wideband common-mode noise suppression in high-speed differential signals, a low-cost compact filter is proposed and designed by etching two coupled C-slotlines on the ground plane. It is found that the bandwidth of the common-mode stopband over -10 dB is from 2.4 GHz to 6.35 GHz with no degradation of the differential-mode insertion loss and group delay within the wide common-mode stopband. In time domain, the differential signal eye diagram is not deteriorated as well. In addition, an equivalent circuit model is developed and provides a quickly prediction of the common-mode stopband. The results show a good consistency between the simulations and measurements.
Citation
Wei Zhuang, Yongrong Shi, Wanchun Tang, and Yafei Dai, "Common-Mode Suppression Design for Gigahertz Differential Signals Based on C-Slotline," Progress In Electromagnetics Research C, Vol. 61, 17-26, 2016.
doi:10.2528/PIERC15090603
References

1. Liu, W.-T., C.-H. Tsai, T.-W. Han, and T.-L. Wu, "An embedded common-mode suppression filter for ghz differential signals using periodic defected ground plane," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 4, 248-250, 2008.
doi:10.1109/LMWC.2008.918883

2. Wu, S.-J., C.-H. Tsai, T.-L. Wu, and T. Itoh, "A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 4, 848-855, 2009.
doi:10.1109/TMTT.2009.2015087

3. Tsai, C.-H. and T.-L. Wu, "A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 195-202, 2010.
doi:10.1109/TMTT.2009.2036413

4. Yanagisawa, K., F. Zhang, T. Sato, and Y. Miura, "A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil," IEEE Trans. Magn., Vol. 41, No. 10, 3571-3573, 2005.
doi:10.1109/TMAG.2005.855189

5. Deng, J. and K. Y. See, "In-circuit characteristics of common-mode chokes," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 451-454, 2007.
doi:10.1109/TEMC.2007.897155

6. Naqui, J., A. Fernandez-Prieto, M. Duran-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martin, "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 10, 3023-3033, 2012.
doi:10.1109/TMTT.2012.2209675

7. Hsiao, C.-Y., C.-H. Tsai, C.-N. Chiu, and T.-L. Wu, "Radiation suppression for cable-attached packages utilizing a compact embedded common-mode filter," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 2, No. 10, 1696-1703, 2012.
doi:10.1109/TCPMT.2012.2207458

8. De Paulis, F., L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, "Compact configuration for common mode filter design based on planar electromagnetic bandgap structures," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 646-654, 2012.
doi:10.1109/TEMC.2011.2170427

9. Fernndez-Prieto, A., J. Martel-Villagran, F. Medina, F. Mesa, S. Qian, J. S. Hong, J. Naqui, and F. Martin, "Dual-band differential filter using broadband common-mode rejection artificial transmission line," Progress In Electromagnetics Research, Vol. 139, 779-797, 2013.
doi:10.2528/PIER13041405

10. Fernndez-Prieto, A., S. Qian, J. S. Hong, J. Martel-Villagran, F. Medina, F. Mesa, J. Naqui, and F. Martin, "Common-mode suppression for balanced bandpass filters in multilayer liquid crystal polymer technology," IET Microw. Antennas Propag., Vol. 9, No. 12, 1249-1253, 2015.
doi:10.1049/iet-map.2014.0258

11. Hsu, S.-K., J.-C. Yen, and T.-L. Wu, "A novel compact forward-wave directional coupler design using periodical patterned ground structure," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 3, 1249-1257, 2011.
doi:10.1109/TMTT.2011.2104978

12. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, 2nd Ed., Artech House, 1996.

13. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980.

14. Knorr, J. B. and K.-D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 7, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624

15. Aikawa, M. and Hiroyo, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 6, 523-528, 1980.
doi:10.1109/TMTT.1980.1130113

16. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley, 2001.
doi:10.1002/0471224758

17. Hsu, S.-K., C. H. Tsai, and T.-L. Wu, "A novel miniaturized forward-wave directional coupler with periodical mushroom-shaped ground plane," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 8, 2277-2283, 2010.
doi:10.1109/TMTT.2010.2052869

18. "Ansys Corporation, high frequency structure simulator,", Available: http://www.anasys.com/.
doi:10.1109/TMTT.2010.2052869

19. Simons, R. N., "Ansys Corporation, ansoft designer V6.,", Available: http://www.anasys.com/.