Vol. 59
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-09-09
A High Efficiency Balanced Frequency Tripler Incorporating Compensation Structure for Millimeter-Wave Applications
By
Progress In Electromagnetics Research C, Vol. 59, 79-88, 2015
Abstract
This paper presents the design and experimental research of a high efficiency balanced frequency tripler in the whole Ka band incorporating compensation solder pads. An anti-parallel GaAs Flip-Chip varistor diode is applied in this frequency tripler. The frequency tripler has the advantages of low conversion loss, broadband and compact circuit size. Considering the parasitic parameters resulted by the actual pads of the nonlinear device, a compensation solder pad was developed and adopted. The conversion loss of the frequency tripler is 15 dB with variation of ±1 dB across the output frequency from 30 to 37.5 GHz. In experiment, the maximum output power of 5.8 dBm is obtained at 35.4 GHz with 3.8% conversion efficiency when the input power is 20 dBm, and the 3-dB operation band width is about 10 GHz, which shows a good agreement between the simulation results and the experimental results.
Citation
Yongjie Liu, Minghua Zhao, Zongrui He, and Zhongbo Zhu, "A High Efficiency Balanced Frequency Tripler Incorporating Compensation Structure for Millimeter-Wave Applications," Progress In Electromagnetics Research C, Vol. 59, 79-88, 2015.
doi:10.2528/PIERC15072103
References

1. Pozar, D. M., Microwave Engineering, 3rd Ed., 599-608, 2005.

2. Chen, Z. and J. Xu, "Design and characterization of a W-band power-combined frequency tripler for high-power and broadband operation," Progress In Electromagnetics Research, Vol. 134, No. 1, 133-150, 2013.
doi:10.2528/PIER12092009

3. Erickson, N. R., et al. "High efficiency MMIC frequency triplers for millimeter and submillimeter wavelengths," IEEE MTT-S International Microwave Symposium Digest, IEEE MTT-S International Microwave Symposium, Vol. 2, 1003-1006, 2000.

4. Zhao, M., Y. Fan, D. Wu, and J. Zhan, "The investigation of W band microstrip integrated high order frequency multiplier based on the nonlinear model of Avalanche diode," Progress In Electromagnetics Research, Vol. 85, 439-453, 2008.
doi:10.2528/PIER08090702

5. Guo, J., J. Xu, and C. Qian, "A new scheme for the design of balanced frequency tripler with Schottky diodes," Progress In Electromagnetics Research, Vol. 137, No. 9, 407-424, 2013.
doi:10.2528/PIER13011706

6. Chen, Z. and J. Xu, "Design of a W-band frequency tripler for broadband operation based on a modified equivalent circuit model of GaAs Schottky varistor diode," Journal of Infrared Millimeter & Terahertz Waves, Vol. 34, No. 1, 28-41, 2013.
doi:10.1007/s10762-012-9943-5

7. Morgan, M. and S. Weinreb, "A full waveguide band MMIC tripler for 75-110 GHz," IEEE MTT-S International Microwave Symposium Digest, IEEE MTT-S International Microwave Symposium, Vol. 1, 103-106, 2001.

8. Porterfield, D. W., et al. "A high-power fixed-tuned millimeter-wave balanced frequency doubler," IEEE Transactions on Microwave Theory & Techniques, Vol. 47, No. 4, 419-425, 1999.
doi:10.1109/22.754875

9. Zeljami, K., J. Gutierrez, J. P. Pascual, T. Fernandez, A. Tazon, and M. Boussouis, "Characterization and modeling of Schottky diodes up to 110 GHz for use in both flip-chip and wire-bonded assembled environments," Progress In Electromagnetics Research, Vol. 131, No. 5, 457-475, 2012.
doi:10.2528/PIER12071305

10. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201

11. Hoefer, W. J. R., "Equivalent series inductivity of a narrow transverse slit in microstrip," IEEE Transactions on Microwave Theory & Techniques, Vol. 25, No. 10, 822-824, 1977.
doi:10.1109/TMTT.1977.1129220

12. Guo, J., J. Xu, and C. Qian, "Design of dual-mode frequency multiplier with Schottky diodes," IEEE Microwave & Wireless Components Letters, Vol. 24, No. 8, 554-556, 2014.
doi:10.1109/LMWC.2014.2323571

13. Liew, Y. H. and J. Joe, "Large-signal diode modeling --- An alternative parameter-extraction technique," IEEE Transactions on Microwave Theory & Techniques, Vol. 53, No. 8, 2633-2638, 2005.
doi:10.1109/TMTT.2005.852747

14. Xue, Q., K. M. Shum, and C. H. Chan, "Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications," IEEE Transactions on Microwave Theory & Techniques, Vol. 51, No. 5, 1449-1454, 2003.
doi:10.1109/TMTT.2003.810153

15. Mass, S. A., "Nonlinear microwave and RF circuits," Microwave Journal, May 2003.

16. Aliakbarian, H., A. Enayati, G. A. E. Vandenbosch, and W. De Raedt, "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805

17. Tang, W. and X. B. Yang, "Design of Ka-band probe transitions," 2011 International Conference on IEEE Applied Superconductivity and Electromagnetic Devices (ASEMD), 2011.