1. Pozar, D. M., Microwave Engineering, 3rd Ed., 599-608, 2005.
2. Chen, Z. and J. Xu, "Design and characterization of a W-band power-combined frequency tripler for high-power and broadband operation," Progress In Electromagnetics Research, Vol. 134, No. 1, 133-150, 2013.
doi:10.2528/PIER12092009
3. Erickson, N. R., et al. "High efficiency MMIC frequency triplers for millimeter and submillimeter wavelengths," IEEE MTT-S International Microwave Symposium Digest, IEEE MTT-S International Microwave Symposium, Vol. 2, 1003-1006, 2000.
4. Zhao, M., Y. Fan, D. Wu, and J. Zhan, "The investigation of W band microstrip integrated high order frequency multiplier based on the nonlinear model of Avalanche diode," Progress In Electromagnetics Research, Vol. 85, 439-453, 2008.
doi:10.2528/PIER08090702
5. Guo, J., J. Xu, and C. Qian, "A new scheme for the design of balanced frequency tripler with Schottky diodes," Progress In Electromagnetics Research, Vol. 137, No. 9, 407-424, 2013.
doi:10.2528/PIER13011706
6. Chen, Z. and J. Xu, "Design of a W-band frequency tripler for broadband operation based on a modified equivalent circuit model of GaAs Schottky varistor diode," Journal of Infrared Millimeter & Terahertz Waves, Vol. 34, No. 1, 28-41, 2013.
doi:10.1007/s10762-012-9943-5
7. Morgan, M. and S. Weinreb, "A full waveguide band MMIC tripler for 75-110 GHz," IEEE MTT-S International Microwave Symposium Digest, IEEE MTT-S International Microwave Symposium, Vol. 1, 103-106, 2001.
8. Porterfield, D. W., et al. "A high-power fixed-tuned millimeter-wave balanced frequency doubler," IEEE Transactions on Microwave Theory & Techniques, Vol. 47, No. 4, 419-425, 1999.
doi:10.1109/22.754875
9. Zeljami, K., J. Gutierrez, J. P. Pascual, T. Fernandez, A. Tazon, and M. Boussouis, "Characterization and modeling of Schottky diodes up to 110 GHz for use in both flip-chip and wire-bonded assembled environments," Progress In Electromagnetics Research, Vol. 131, No. 5, 457-475, 2012.
doi:10.2528/PIER12071305
10. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201
11. Hoefer, W. J. R., "Equivalent series inductivity of a narrow transverse slit in microstrip," IEEE Transactions on Microwave Theory & Techniques, Vol. 25, No. 10, 822-824, 1977.
doi:10.1109/TMTT.1977.1129220
12. Guo, J., J. Xu, and C. Qian, "Design of dual-mode frequency multiplier with Schottky diodes," IEEE Microwave & Wireless Components Letters, Vol. 24, No. 8, 554-556, 2014.
doi:10.1109/LMWC.2014.2323571
13. Liew, Y. H. and J. Joe, "Large-signal diode modeling --- An alternative parameter-extraction technique," IEEE Transactions on Microwave Theory & Techniques, Vol. 53, No. 8, 2633-2638, 2005.
doi:10.1109/TMTT.2005.852747
14. Xue, Q., K. M. Shum, and C. H. Chan, "Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications," IEEE Transactions on Microwave Theory & Techniques, Vol. 51, No. 5, 1449-1454, 2003.
doi:10.1109/TMTT.2003.810153
15. Mass, S. A., "Nonlinear microwave and RF circuits," Microwave Journal, May 2003.
16. Aliakbarian, H., A. Enayati, G. A. E. Vandenbosch, and W. De Raedt, "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805
17. Tang, W. and X. B. Yang, "Design of Ka-band probe transitions," 2011 International Conference on IEEE Applied Superconductivity and Electromagnetic Devices (ASEMD), 2011.