Vol. 59
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-09-10
Dielectric Resonator Antenna Arrays for Microwave Energy Harvesting and Far-Field Wireless Power Transfer
By
Progress In Electromagnetics Research C, Vol. 59, 89-99, 2015
Abstract
This paper presents dielectric resonator antennas (DRAs) as efficient energy harvesters in the microwaves regime. A single DRA and 1×3 array were used to build foundation profiles for DRAs as energy harvesters. The proposed structures were designed and fabricated to resonate around 5.5 GHz. The study examined different factors that affect the harvester power efficiency. The size of ground plane and coupling between dielectric resonator (DR) elements in an array were studied, highlighting their effects on the overall efficiency of the harvester for different incident polarizations. A 5×5 array was built based on the studied factors and tested numerically and experimentally. Measurements showed that energy absorption eciency as high as 67% can be achieved using an array of DR antennas.
Citation
Ahmed Z. Ashoor, and Omar M. Ramahi, "Dielectric Resonator Antenna Arrays for Microwave Energy Harvesting and Far-Field Wireless Power Transfer," Progress In Electromagnetics Research C, Vol. 59, 89-99, 2015.
doi:10.2528/PIERC15071504
References

1. Harb, A., "Energy harvesting: State-of-the-art," Renewable Energy, Vol. 36, No. 10, 2641-2654, Oct. 2011.
doi:10.1016/j.renene.2010.06.014

2. Paradiso, J. and T. Starner, "Energy scavenging for mobile and wireless electronics," IEEE Pervasive Computing, Vol. 4, No. 1, 18-27, Jan. 2005.
doi:10.1109/MPRV.2005.9

3. Ukkonen, L., L. Sydanheimo, and M. Kivikoski, "Effects of metallic plate size on the performance of microstrip patch-type tag antennas for passive RFID," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 410-413, Dec. 2005.
doi:10.1109/LAWP.2005.860212

4. Jan, J.-Y. and L.-C. Tseng, "Small planar monopole antenna with a shorted parasitic inverted-l wire for wireless communications in the 2.4-, 5.2-, and 5.8-GHz bands," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1903-1905, Jul. 2004.
doi:10.1109/TAP.2004.831370

5. Lai, Q., G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, "Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3589-3592, Nov. 2008.

6. Jabbar, H., Y. Song, and T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, 247-253, Feb. 2010.
doi:10.1109/TCE.2010.5439152

7. Ramahi, O. M., T. S. Almoneef, M. Alshareef, and M. S. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173 903-173 903-5, Oct. 2012.
doi:10.1063/1.4764054

8. Alavikia, B., T. S. Almoneef, and O. M. Ramahi, "Electromagnetic energy harvesting using complementary split-ring resonators," Applied Physics Letters, Vol. 104, No. 16, 163 903-163 903-4, Oct. 2014.
doi:10.1063/1.4873587

9. AlShareef, M. and O. M. Ramahi, "Electrically small particles combining even- and odd-mode currents for microwave energy harvesting," Applied Physics Letters, Vol. 104, 253 906-253 906-4, 2014.
doi:10.1063/1.4885776

10. Leung, K.-W., E. H. Lim, and X. S. Fang, "Dielectric resonator antennas: From the basic to the aesthetic," Proceedings of the IEEE, Vol. 100, No. 7, 2181-2193, Jul. 2012.
doi:10.1109/JPROC.2012.2187872

11. Luk, K. M. K. and K. W. K. Leung, "Dielectric Resonator Antennas," Research Studies Press, 2003.

12. Petosa, A., A. Ittipiboon, Y. Antar, D. Roscoe, and M. Cuhaci, "Recent advances in dielectric-resonator antenna technology," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 35-48, Jun. 1998.
doi:10.1109/74.706069

13. Petosa, A., Dielectric Resonator Antenna Handbook, Artech House, 2007.

14. Chen, Y.-C., S.-M. Tsao, C.-S. Lin, S.-C. Wang, and Y.-H. Chien, "Microwave dielectric properties of 0.95mgtio(3)-0.05catio(3) for application in dielectric resonator antenna," Journal of Alloys and Compounds, Vol. 471, No. 1-2, 347-351, Mar. 2009.
doi:10.1016/j.jallcom.2008.03.118

15. Akyildiz, I., W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Communications Magazine, Vol. 40, No. 8, 102-114, Aug. 2002.
doi:10.1109/MCOM.2002.1024422

16. Kingsley, J. W., R. Thomas, and S. Williams, "Attaching antenna structures to electrical feed structures,", US Patent 7,183,975, Feb. 2007.

17. Roy, L., N. Berthereau, N. Hojjat, K. Kautio, and H. Panesaar, "Dielectric resonator antenna with microstrip-waveguide transition in LTCC," Electronics Letters, Vol. 42, No. 19, 1078-1079, Sep. 2006.
doi:10.1049/el:20061501

18. Zbitou, J., M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 147-152, Jan. 2006.
doi:10.1109/TMTT.2005.860509

19. Hagerty, J., F. Helmbrecht, W. McCalpin, R. Zane, and Z. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 1014-1024, Mar. 2004.
doi:10.1109/TMTT.2004.823585

20. McSpadden, J., L. Fan, and K. Chang, "Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 2053-2060, Dec. 1998.
doi:10.1109/22.739282

21. Harouni, Z., L. Cirio, L. Osman, A. Gharsallah, and O. Picon, "A dual circularly polarized 2.45-GHz rectenna for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 306-309, Apr. 2011.
doi:10.1109/LAWP.2011.2141973

22. Ramahi, O. M. and A. Ashoor, "Dielectric resonator antennas and arrays for electromagnetic energy harvesting,", US Provisional Patent Application No. 62035265, Aug. 8, 2014.

23. Kumar Mongia, R. and A. Ittipiboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1348-1356, Sep. 1997.
doi:10.1109/8.623123

24. ANSYS HFSS Version 15.0.0, Ansys Inc., http://www.ansys.com.

25. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, 2005.

26. Petosa, A., R. Mongia, A. Ittipiboon, and J. Wright, "Design of microstrip-fed series array of dielectric resonator antennas," Electronics Letters, Vol. 31, No. 16, 1306-1307, Aug. 1995.
doi:10.1049/el:19950898

27. Junker, G., A. Kishk, A. Glisson, and D. Kajfez, "Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna," Electronics Letters, Vol. 30, No. 3, 177-178, Feb. 1994.
doi:10.1049/el:19940191

28. Almoneef, T. S. and O. M. Ramahi, "Metamaterial electromagnetic energy harvester with near unity efficiency," Applied Physics Letters, Vol. 106, No. 15, 153902, 2015.
doi:10.1063/1.4916232