Vol. 58
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-06-28
Varying the Operation Bandwidth of Metamaterial-Inspired Filtering Modules for Horn Antennas
By
Progress In Electromagnetics Research C, Vol. 58, 61-68, 2015
Abstract
Recently, we have presented a novel approach to design metamaterial-inspired notch filters that can be integrated within horn antennas of receiving systems to mitigate the effects of narrowband interfering signals. The filter module consists of a single Split Ring Resonator (SRR), whose rejection band needs to be matched to the bandwidth of the particular interfering signal we want to suppress. Extending our previous work, we show here how it is possible to control the bandwidth of such a filtering module by using different metamaterial-inspired resonators. In particular, we show that, while a reduction of the rejection band can be easily obtained by increasing the miniaturization rate of the resonator, the enlargement of the rejection band cannot be obtained in the same way by simply reducing the resonator quality factor. We show that a solution of the latter problem can be worked out by applying the ``critical coupling'' concept and considering the filtering module to be made of two equal SRRs with a proper optimal separation. The effectiveness of the approach is demonstrated trough proper full-wave simulations and experiments on a fabricated prototype. The proposed technique, used here to design a filtering module for a specific radiating system, has a more general relevance and can be applied to all cases where the operation bandwidth of a component is limited by the resonant nature of a single metamaterial-inspired particle.
Citation
Mirko Barbuto, Fabrizio Trotta, Filiberto Bilotti, and Alessandro Toscano, "Varying the Operation Bandwidth of Metamaterial-Inspired Filtering Modules for Horn Antennas," Progress In Electromagnetics Research C, Vol. 58, 61-68, 2015.
doi:10.2528/PIERC15051402
References

1. Tretyakov, S. A. and S. I. Maslovski, "Veselago materials: What is possible and impossible about the dispersion of the constitutive parameters," IEEE Antennas Propag. Mag., Vol. 49, No. 1, 37-43, Feb. 2007.
doi:10.1109/MAP.2007.370980

2. Lai, A., C. Christophe, and T. Itho, "Composite right/left-handed transmission line metamaterials," IEEE Microw. Mag., Vol. 5, 34-50, 2014.

3. Jin, P. and R.W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1446-1459, May 2011.
doi:10.1109/TAP.2011.2123053

4. Dakhli, S., H. Rmili, K. Mahdjoubi, J.-M. Floc’h, and F. Choubani, "A family of directive metamaterial-inspired antennas," Progress In Electromagnetics Research, Vol. 49, 105-113, 2014.
doi:10.2528/PIERC14030503

5. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "A combined bandpass filter and polarization transformer for horn antennas," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1065-1068, 2013.
doi:10.1109/LAWP.2013.2280151

6. Barbuto, M., F. Bilotti, and A. Toscano, "Novel waveguide components based on complementary electrically small resonators," Photonic Nanostruct., Vol. 12, 284-290, 2014.
doi:10.1016/j.photonics.2014.03.005

7. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Horn antennas with integrated notch filters," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 781-785, 2015.
doi:10.1109/TAP.2014.2378269

8. Bilotti, F., L. Di Palma, D. Ramaccia, and A. Toscano, "Self-filtering low-noise horn antenna for satellite applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 354-357, 2012.
doi:10.1109/LAWP.2012.2191129

9. Ramaccia, D., L. Di Palma, G. Guarnieri, S. Scaf`e, A. Toscano, and F. Bilotti, "Balanced and unbalanced waveguide power splitters based on connected bi-Omega particles," Electronics Letters, Vol. 49, No. 24, 1504-1506, 2013.
doi:10.1049/el.2013.1565

10. Ramaccia, D., L. Di Palma, D. Ates, E. Ozbay, A. Toscano, and F. Bilotti, "Analytical model of connected bi-Omega: Robust particle for the selective power transmission through sub-wavelength apertures," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2093-2101, 2014.
doi:10.1109/TAP.2014.2301445

11. Tretyakov, S. A., "Meta-materials with wideband negative permittivity and permeability," Microw. Opt. Technol. Lett., Vol. 31, No. 3, 163-165, 2001.
doi:10.1002/mop.1387

12. Hrabar, S., I. Krois, and A. Kiricenko, "Towards active dispersionless ENZ meta-material for cloaking applications," Metamaterials, Vol. 4, 89-97, 2010.
doi:10.1016/j.metmat.2010.07.001

13. Barbuto, M., A. Monti, F. Bilotti, and A. Toscano, "Design of a non-foster actively loaded SRR and application in metamaterial-inspired components," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1219-1227, Mar. 2013.
doi:10.1109/TAP.2012.2228621

14. Meng, F. Y., Q. Wu, D. Erni, and L. W. Li, "Controllable metamaterial-loaded waveguides supporting backward and forward waves," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3400-3411, 2011.
doi:10.1109/TAP.2011.2161540

15. Scarborough, C. P., Q. Wu, D. H. Werner, E. Lier, R. K. Shaw, and B. G. Martin, "Demonstration of an octave-bandwidth negligible-loss metamaterial horn antenna for satellite applications," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1081-1088, 2013.
doi:10.1109/TAP.2012.2227660

16. Ma, X., C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, "A dual circularly polarized horn antenna in Ku-band based on chiral metamateria," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2307-2311, 2014.
doi:10.1109/TAP.2014.2301841

17. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

18. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

19. Barbuto, M., A. Alu, F. Bilotti, A. Toscano, and L. Vegni, "Characteristic impedance of a microstrip line with a dielectric overlay," COMPEL — The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 32, No. 6, 1855-1867, 2013.
doi:10.1108/COMPEL-10-2012-0283

20. CST Studio Suite 2014, CST Computer Simulation Technology AG, , Available at: www.cst.com.

21. Bowick, C., RF Circuit Design, 2nd Edition, Newnes, 2007.

22. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design. Theory and experiment," IEEE Trans. Antennas Propag., Vol. 51, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

23. Barbuto, M., F. Bilotti, and A. Toscano, "Design of a multifunctional SRR-loaded printed monopole antenna," Int. J. RF Microw. CAE, Vol. 22, 552-557, 2012.
doi:10.1002/mmce.20645

24. Aydin, K., A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture," Phys. Rev. Lett., Vol. 102, 013904, 2009.
doi:10.1103/PhysRevLett.102.013904