Vol. 57
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-05-22
Compact Multi-Band Filter Based on Multi-Ring Complementary Split Ring Resonators
By
Progress In Electromagnetics Research C, Vol. 57, 127-135, 2015
Abstract
A novel multi-band band-reject filter based on multi-ring complementary split-ring resonators (multi-ring CSRRs) is presented. The proposed filter is realized by etching the multi-ring CSRRs in the ground plane beneath a microstrip line. The multi-ring CSRR offers the possibility of designing multi-band filters with a small size and simple structure. To validate the proposed prototype of the multi-band filter, a dual-band and tri-band filters were fabricated and tested. The proposed filters show a good multi-band property to satisfy the requirement of WLAN in the 2.4/5.8 GHz bands and WiMAX in the 2.5/3.4 GHz bands. A good agreement between experimental and simulated results is obtained.
Citation
Imene Sassi, Larbi Talbi, and Khelifa Hettak, "Compact Multi-Band Filter Based on Multi-Ring Complementary Split Ring Resonators," Progress In Electromagnetics Research C, Vol. 57, 127-135, 2015.
doi:10.2528/PIERC15041904
References

1. Cui, T. J., D. R. Smith, and L. Ruopeng, Metamaterials: Theory, Design, and Applications, Springer Science & Business Media, New York, 2010.

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

3. Smith, D. R., W. J. Padilla, D. C. Wier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IET Microwaves, Antennas & Propagation, Vol. 51, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

5. Garca-Garca, J. J., I. Gil, F. Martin, M. C. Velzquez-Ahumada, and J. Martel, "Efficient area reduction in microstrip crosscoupled resonator filters by using split rings resonators and spiral resonators," 35th European Microwave Conference (CCECE), 1235-1238, 2005.

6. Fan, J.-W., C.-H. Liang, and D. Li, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

7. De Paco, P., O. Menendez, and J. Marin, "Dual-band filter using non-bianisotropic split-ring resonators," Progress In Electromagnetics Research Letters, Vol. 13, 51-58, 2010.
doi:10.2528/PIERL09120205

8. Zhou, L., S. Liu, H. Zhang, X. Kong, and Y. Guo, "Compact dual-band bandpass filter using improved split ring resonators based on stepped impedance resonator," Progress In Electromagnetics Research Letters, Vol. 23, 57-63, 2011.
doi:10.2528/PIERL11030402

9. Fallahzadeh, S., H. Bahrami, and M. Tayarani, "A novel dual-band bandstop waveguide filter using split ring resonators," Progress In Electromagnetics Research Letters, Vol. 12, 133-139, 2009.
doi:10.2528/PIERL09103103

10. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, R. Martin, and M. Sorolla, "Effective nagative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

11. Taher Al-Nuaimi, M. K. and W. G. Whittow, "Compact microstrip band stop filter using SRR and CSSR: Design, simulation and results," The European Conference on Antennas and Propagation, 1-5, 2010.

12. Lai, X., Q. Li, P. Y. Qin, B. Wu, and C. H. Liang, "A novel wideband bandpass filter based on complementary split-ring resonator," Progress In Electromagnetics Research C, Vol. 1, 177-184, 2008.
doi:10.2528/PIERC08013104

13. Khan, S. N., X. G. Liu, L. X. Shao, and Y. Wang, "Complementary split ring resonators of large stop bandwidth," Progress In Electromagnetics Research Letters, Vol. 14, 127-132, 2010.
doi:10.2528/PIERL10033105

14. Li, M.-H., H.-L. Yang, H. Lin, and B.-X. Xiao, "Compact dual-band band-reject filter using complementary split-ring resonators," Electronics Letters, Vol. 48, No. 10, 574-575, 2012.
doi:10.1049/el.2012.0487

15. Cao, H., S. He, H. Li, and S. Yang, "A compact wideband bandpass filter using novel CSRR loaded QMSIW resonator with high selectivity," Progress In Electromagnetics Research C, Vol. 41, 239-254, 2013.
doi:10.2528/PIERC13053006

16. Che, W. Q., W. J. Feng, and K. Deng, "Microstrip dual-band bandstop filter of defected ground structure and stepped impedance resonators," International Journal of Electronics, Vol. 97, 1351-1359, 2010.
doi:10.1080/00207217.2010.488907

17. Woo, D.-J., T.-K. Lee, J.-W. Lee, and S.-H. Chao, "Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2840-2847, 2006.
doi:10.1109/TMTT.2006.875450

18. Rehman, S. U., A. F. Sheta, and M. Alkanhal, "Compact band-stop filter using defected ground structure (DGS)," International Electronics, Communications and Photonics Conference, SIECPC, 2011.

19. Wang, J., H. Ning, L. Mao, and M. Li, "Miniaturized dual-band bandstop filter using defected microstrip structure and defected ground structure," IEEE MTT-S International Microwave Symposium Digest, 1-3, 2012.

20. Xiao, J.-K. and Y.-F. Zhu, "New U-shaped DGS bandstop filters," Progress In Electromagnetics Research C, Vol. 41, 179-191, 2012.
doi:10.2528/PIERC11091805

21. Turkmen, O., E. Ekmekci, and G. Turhan-Sayan, "A new multi-ring SRR type metamaterial design with multiple magnetic resonances," PIERS Proceedings, 315-319, Mar. 20–23, 2011.

22. Smith, D. R., S. Schultz, P. Markos, and M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 1-5, 2002.

23. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 1-7, 2004.
doi:10.1103/PhysRevE.70.060901

24. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1-7, 2005.
doi:10.1109/TMTT.2005.845211