Vol. 58
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-06-19
Propagation and Radiation Characteristics of Multilayer Coupled-Line Bandpass Filters Using Conductor-Backed Coplanar Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 58, 21-31, 2015
Abstract
This paper presents the analytical design formulas for the bandpass filters which are built on the asymmetrically coupled-line conductor-backed coplanar transmission lines (CBCTLs) in multilayer configuration. The full-wave simulation is employed to characterize the far-field patterns of space-wave and surface-wave radiations as well as the frequency-dependent conductor, dielectric, and radiation losses. Good agreement among the results of full-wave simulation, transmission-line model, and measurement justifies the design procedure and validates the analytical design formulas. By properly placing the dielectric materials in multilayer configuration, a bandpass filter for minimizing the radiated power loss and improving the stopband characteristic can be achieved.
Citation
Chi-Jung Kuo, Chong-Yi Liou, and Shau-Gang Mao, "Propagation and Radiation Characteristics of Multilayer Coupled-Line Bandpass Filters Using Conductor-Backed Coplanar Transmission Lines," Progress In Electromagnetics Research C, Vol. 58, 21-31, 2015.
doi:10.2528/PIERC15022703
References

1. Hunter, I. C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters-applications and technology," IEEE Trans. Microwave Theory and Tech., Vol. 50, 794-805, 2002.
doi:10.1109/22.989963

2. Chu, P., et al. "A planar bandpass filter implemented with a hybrid structure of substrate integrated waveguide and coplanar waveguide," IEEE Trans. Microwave Theory and Tech., Vol. 62, No. 2, 266-274, 2014.
doi:10.1109/TMTT.2013.2294861

3. Matthaei, G. L., "Narrow-band, fixed-tuned, and tunable bandpass filter with Zig-Zig Hairpin-COMB resonators," IEEE Trans. Microwave Theory and Tech., Vol. 51, 1214-1219, 2003.
doi:10.1109/TMTT.2003.809631

4. Cho, Y.-H. and G. M. Cho, "Two- and four-pole tunable 0.7–1.1GHz bandpass-to-bandstop filters with bandwidth control," IEEE Trans. Microwave Theory and Tech., Vol. 62, No. 3, 457-463, 2014.
doi:10.1109/TMTT.2014.2304360

5. Kuo, J.-T. and E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microwave Theory and Tech., Vol. 51, 1554-1559, 2003.

6. Zhang, R. and L. Zhang, "Synthesis of dual-wideband bandpass filters with source-load coupling network," IEEE Trans. Microwave Theory and Tech., Vol. 62, No. 3, 441-449, 2014.
doi:10.1109/TMTT.2014.2300047

7. Kuo, Y.-K., C.-H. Wang, and C. H. Chen, "Novel reduced-size coplanar-waveguide bandpass filters," IEEE Microwave Wireless Components Lett., Vol. 11, 65-67, 2001.

8. Kundu, A. C. and I. Awai, "Resonant frequency and quality factors of a silver-coated λ/4 dielectric waveguide resonator," IEEE Trans. Microwave Theory and Tech., Vol. 46, 11124-11131, 1998.

9. Xu and K. Xu, "Understanding leaky-wave structures: A special form of guided-wave structure," IEEE Microwave Magazine, Vol. 14, No. 5, 87-96, 2013.
doi:10.1109/MMM.2013.2259400

10. Boriskina, S. V. and A. I. Nosich, "Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide," IEEE Trans. Microwave Theory and Tech., Vol. 47, 224-231, 1999.
doi:10.1109/22.744298

11. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley and Sons, 2001.
doi:10.1002/0471221619

12. Lin, F.-L. and R.-B. Wu, "Computations for radiation and surface-wave losses in coplanar waveguide bandpass filter," IEEE Trans. Microwave Theory and Tech., Vol. 47, 385-389, 1999.
doi:10.1109/22.754869

13. Ikalainen, P. K. and G. L. Matthaei, "Narrow-band microstrip bandpass filters with low radiation losses for millimeter-wave applications," IEEE Trans. Microwave Theory and Tech., Vol. 36, 514-521, 1988.
doi:10.1109/22.3543

14. Yusuf, Y. and X. Yusuf, "Compact low-loss integration of high-Q 3-D filters with highly efficient antennas," IEEE Trans. Microwave Theory and Tech., Vol. 59, No. 4, 857-865, 2011.
doi:10.1109/TMTT.2010.2100407

15. Yang, T., P. Yang, R. Chi, and W. Xu, "Folded substrate integrated waveguide based composite right/left-handed transmission line and its application to partial H-plane filters," IEEE Trans. Microwave Theory and Tech., Vol. 61, No. 2, 789-799, 2013.
doi:10.1109/TMTT.2012.2231431

16. Nguyen, C., "Broadside-coupled coplanar waveguide and their end-coupled bandpass filter application," IEEE Trans. Microwave Theory and Tech., Vol. 40, 2181-2189, 1992.
doi:10.1109/22.179879

17. Magerko, M. A., L. Fan, and K. Chang, "Configuration considerations for multi-layered packaged conductor-backed coplanar waveguide MICs," 1994 IEEE MTT-S Int. Microwave Symp. Dig., 1697-1700, 1994.
doi:10.1109/MWSYM.1994.335114

18. Warns, C., W. Menzel, and H. Schumacher, "Transmission lines and passive elements for multilayer coplanar circuits on silicon," IEEE Trans. Microwave Theory and Tech., Vol. 46, 616-622, 1998.
doi:10.1109/22.668672

19. Sutono, A., J. Laskar, and W. R. Smith, "Design of miniature multilayer on-package integrated image-reject filters," IEEE Trans. Microwave Theory and Tech., Vol. 51, 156-162, 2003.
doi:10.1109/TMTT.2002.806929

20. Qian, S., G. Qian, J. Brand, and P. Hong, "The design of miniature multilayer bandpass filters with mixed couplings," IEEE Trans. Microwave Theory and Tech., Vol. 61, No. 12, 4072-4078, 2013.
doi:10.1109/TMTT.2013.2288595

21. Davis, M. F., A. Sutono, S.-W. Yoon, S. Mandal, N. Bushyager, C.-H. Lee, K. Lim, S. Pinel, M. Maeng, A. Obatoyinbo, S. Chakraborty, J. Laskar, and , "Integrated RF architectures in fully-organic SOP technology," IEEE Trans. Adv. Packag., Vol. 25, 136-142, 2002.
doi:10.1109/TADVP.2002.803261

22. Cho, C. and K. C. Gupta, "Design methodology for multilayer coupled line filter," 1997 IEEE MTT-S Int. Microwave Symp. Dig., 785-788, 1997.
doi:10.1109/MWSYM.1997.602907

23. Hui, J. N., W. J. Hui, and W. Q. Feng, "Balun bandpass filter based on multilayer substrate integrated waveguide power divider," Electronics Letters, Vol. 48, No. 10, 571, 2012.
doi:10.1049/el.2012.0479

24. Hong, J.-S. and M. J. Lancaster, "Aperture-coupled microstrip open-loop resonators and their applications to the design of novel microstrip bandpass filters," IEEE Trans. Microwave Theory and Tech., Vol. 47, 1848-1855, 1999.
doi:10.1109/22.788522

25. Qian, S., "Miniature quasi-lumped-element wideband bandpass filter at 0.5–2-GHz band using multilayer liquid crystal polymer technology (Technical report)," IEEE Trans. Microwave Theory and Tech., Vol. 60, No. 9, 2799, 2012.
doi:10.1109/TMTT.2012.2205939

26. Mao, S.-G. and M.-Y. Chen, "Propagation characteristics of finite-width conductor-backed coplanar waveguides with periodic electromagnetic bandgap cells," IEEE Trans. Microwave Theory and Tech., Vol. 50, 2624-2628, 2002.

27. Liu, Y., K. Cha, and T. Itoh, "Non-leaky coplanar (NLC) waveguides with conductor backing," IEEE Trans. Microwave Theory and Tech., Vol. 43, 1067-1072, 1995.
doi:10.1109/22.414588

28. Liu, Y. and T. Itoh, "Leakage phenomena in multilayer conductor-backed coplanar waveguide," IEEE Microwave and Guided Wave Lett., Vol. 3, 426-427, 1993.

29. Das, N. K., "Methods of suppression or avoidance of parallel-plate power leakage from conductor-backed transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 44, 169-181, 1996.
doi:10.1109/22.481565

30. Tripathi, V. K., "Asymmetric coupled transmission lines in an inhomogeneous medium," IEEE Trans. Microwave Theory and Tech., Vol. 23, 734-739, 1975.
doi:10.1109/TMTT.1975.1128665

31. Losch, I. E. and J. A. G. Malherbe, "Design procedure for inhomogeneous coupled line sections," IEEE Trans. Microwave Theory and Tech., Vol. 36, 1186-1190, 1988.
doi:10.1109/22.3654

32. Magnusson, P. C., G. C. Alexander, and V. K. Tripathi, Transmission Lines and Wave Propagation, 4th edition, CRC Press, 2000.

33. Shino, N. and Z. Popovic, "Radiation from ground-plane photonic bandgap microstrip waveguides," 2002 IEEE MTT-S Int. Microwave Symp. Dig., 1079-1082, 2002.
doi:10.1109/MWSYM.2002.1011828

34. Kim, S.-J., H.-S. Yoon, and H.-Y. Lee, "Suppression of leakage resonance in coplanar MMIC packages using a Si sub-mount layer," IEEE Trans. Microwave Theory and Tech., Vol. 48, 2664-2669, 2000.