1. Kim, J., J. Cha, I. Kim, and B. Kim, "Optimum operation of asymmetrical-cells-based linear Doherty power amplifiers --- uneven power drive and power matching," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1802-1809, 2005.
doi:10.1109/TMTT.2005.847073
2. Moon, J., J. Kim, and B. Kim, "A wideband envelope tracking Doherty amplifier for WiMAX systems," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 49-51, 2008.
doi:10.1109/LMWC.2007.912019
3. Sahan, N. and S. Demir, "Analysis, design optimization and performance comparision of bias adapted and asymmetrical Doherty power amplifiers," Progress In Electromagnetics Research B, Vol. 54, 337-356, 2013.
doi:10.2528/PIERB13071502
4. Xia, J., X. Zhu, L. Zhang, J. Zhai, and Y. Sun, "High-efficiency GaN Doherty power amplifier for 100-MHz LTE-advanced application based on modified load modulation network," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 8, 2911-2921, 2013.
doi:10.1109/TMTT.2013.2269052
5. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "Theory and experimental results of a Class F AB-C Doherty power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 8, 1936-1947, 2009.
doi:10.1109/TMTT.2009.2025433
6. Moon, J., J. Kim, I. Kim, and B. Kim, "Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 143-152, 2011.
doi:10.1109/TMTT.2010.2091207
7. Darraji, R. and F. M. Ghannouchi, "Digital Doherty amplifier with enhanced efficiency and extended range," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 11, 2898-2909, 2011.
doi:10.1109/TMTT.2011.2166122
8. Kim, B., J. Kim, J. Kim, and J. Cha, "The Doherty power amplifier," IEEE Microwave Mag., Vol. 7, No. 5, 42-50, 2006.
doi:10.1109/MW-M.2006.247914
9. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 934-944, 2011.
doi:10.1109/TMTT.2010.2098040
10. Sun, G. and H. Rolf, "Broadband Doherty power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 1, 99-111, 2012.
doi:10.1109/TMTT.2011.2175237
11. Akbarpour, M., M. Helaoui, and F. M. Ghannouchi, "A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 9, 2863-2874, 2012.
doi:10.1109/TMTT.2012.2206050
12. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2543-2548, 2012.
doi:10.1109/TMTT.2012.2201745
13. Ye, D., Y. Wu, and Y. Liu, "A tradeoff design of broadband power amplifier in Doherty configuration utilizing a novel coupled-line couple," Progress In Electromagnetics Research C, Vol. 48, 11-19, 2014.
doi:10.2528/PIERC14011702
14. Guan, L. and A. Zhu, "Green communications: Digital predistortion for wideband RF power amplifiers," IEEE Microwave Mag., Vol. 15, No. 7, 84-99, 2014.
doi:10.1109/MMM.2014.2356037
15. Takenaka, I., K. Ishikura, H. Takahashi, K. Hasegawa, K. Asano, and N. Iwata, "Improvement of intermodulation distortion asymmetry characteristics with wideband microwave signals in high power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 6, 1355-1363, 2008.
doi:10.1109/TMTT.2008.923365
16. Aaen, P. H., J. H. Pla, and J. Wood, Modeling and Characterization of RF and Microwave Power FETs, Cambridge University Press, 2007.
doi:10.1017/CBO9780511541124
17. Brinkhoff, J., A. E. Parker, and M. Leung, "Baseband impedance and linearization of FET circuits," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 12, 2523-2530, 2003.
doi:10.1109/TMTT.2003.819208
18. Feng, Y., Y. Liu, C. Yu, S. Li, J. Li, and X. Zheng, "Design of linearity improved asymmetrical GaN doherty power amplifier using composite right/left-handed transmission lines," Progress In Electromagnetics Research B, Vol. 53, 89-106, 2013.
doi:10.2528/PIERB13060502
19. Giofre, R., P. Colantonio, and F. Giannini, "A Doherty architecture with high feasibility and defined bandwidth behavior," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3308-3317, 2013.
doi:10.1109/TMTT.2013.2274432
20. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, 2009.
doi:10.1002/mmce.20350
21. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., Vol. 13, No. 2, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964
22. Haedong, J., P. Roblin, and C. Quindroit, "Adjustable load-modulation asymmetric Doherty amplifier design using nonlinear embedding," IEEE MTT-S Int. Microw. Symp., 1-4, 2014.
23. Moon, J., J. Kim, I. Kim, Y. Woo, S. Hong, J. Lee, and B. Kim, "GaN HEMT based Doherty amplifier for 3.5-GHz WiMAX applications," Proc. 37th Eur. Microw. Conf., 1193-1196, 2007.
24. Yang, M., J. Wang, J. Xia, Y. Sun, and X. Zhu, "High efficiency GaN wideband Doherty amplifier for LTE-advanced applications," Proc. Microw. Conf. 2011, 510-513, 2011.