Vol. 56
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-08
Design of Asymmetrical Doherty Power Amplifier with Reduced Memory Effects and Enhanced Back-off Efficiency
By
Progress In Electromagnetics Research C, Vol. 56, 195-203, 2015
Abstract
This paper presents the design of an asymmetrical Doherty power amplifier (DPA) with improved linearity and efficiency performance. Resonator-type drain bias networks, providing high impedances at the carrier frequency and low impedances with small variation at the envelope frequency, are introduced to reduce the DPA's memory effects when transmitting wideband signals. The general criteria for DPA design are summarized, and the approach to obtain optimum fundamental and harmonic impedances is proposed to achieve back-off efficiency enhancement. For experimental validation, the asymmetrical DPA is designed and implemented using two identical GaN HEMTs. Measured with continuous wave (CW), the proposed DPA delivers a saturation power greater than 49.3 dBm from 3400 to 3600 MHz, along with high drain efficiency of over 62% and 48% at peak and 8-dB back-off power, respectively. Driven with 100-MHz LTE-advanced signals, the adjacent channel leakage ratio (ACLR) asymmetry of the DPA at 20-MHz offset is lower than 1-dB. After digital predistortion (DPD) linearization, the proposed DPA achieves an ACLR of better than -48 dBc at an average output power about 41 dBm and the drain efficiency over 45% across the frequency band.
Citation
Chuanhui Ma, Wensheng Pan, and You-Xi Tang, "Design of Asymmetrical Doherty Power Amplifier with Reduced Memory Effects and Enhanced Back-off Efficiency," Progress In Electromagnetics Research C, Vol. 56, 195-203, 2015.
doi:10.2528/PIERC15013002
References

1. Kim, J., J. Cha, I. Kim, and B. Kim, "Optimum operation of asymmetrical-cells-based linear Doherty power amplifiers --- uneven power drive and power matching," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1802-1809, 2005.
doi:10.1109/TMTT.2005.847073

2. Moon, J., J. Kim, and B. Kim, "A wideband envelope tracking Doherty amplifier for WiMAX systems," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 49-51, 2008.
doi:10.1109/LMWC.2007.912019

3. Sahan, N. and S. Demir, "Analysis, design optimization and performance comparision of bias adapted and asymmetrical Doherty power amplifiers," Progress In Electromagnetics Research B, Vol. 54, 337-356, 2013.
doi:10.2528/PIERB13071502

4. Xia, J., X. Zhu, L. Zhang, J. Zhai, and Y. Sun, "High-efficiency GaN Doherty power amplifier for 100-MHz LTE-advanced application based on modified load modulation network," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 8, 2911-2921, 2013.
doi:10.1109/TMTT.2013.2269052

5. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "Theory and experimental results of a Class F AB-C Doherty power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 8, 1936-1947, 2009.
doi:10.1109/TMTT.2009.2025433

6. Moon, J., J. Kim, I. Kim, and B. Kim, "Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 143-152, 2011.
doi:10.1109/TMTT.2010.2091207

7. Darraji, R. and F. M. Ghannouchi, "Digital Doherty amplifier with enhanced efficiency and extended range," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 11, 2898-2909, 2011.
doi:10.1109/TMTT.2011.2166122

8. Kim, B., J. Kim, J. Kim, and J. Cha, "The Doherty power amplifier," IEEE Microwave Mag., Vol. 7, No. 5, 42-50, 2006.
doi:10.1109/MW-M.2006.247914

9. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 934-944, 2011.
doi:10.1109/TMTT.2010.2098040

10. Sun, G. and H. Rolf, "Broadband Doherty power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 1, 99-111, 2012.
doi:10.1109/TMTT.2011.2175237

11. Akbarpour, M., M. Helaoui, and F. M. Ghannouchi, "A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 9, 2863-2874, 2012.
doi:10.1109/TMTT.2012.2206050

12. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2543-2548, 2012.
doi:10.1109/TMTT.2012.2201745

13. Ye, D., Y. Wu, and Y. Liu, "A tradeoff design of broadband power amplifier in Doherty configuration utilizing a novel coupled-line couple," Progress In Electromagnetics Research C, Vol. 48, 11-19, 2014.
doi:10.2528/PIERC14011702

14. Guan, L. and A. Zhu, "Green communications: Digital predistortion for wideband RF power amplifiers," IEEE Microwave Mag., Vol. 15, No. 7, 84-99, 2014.
doi:10.1109/MMM.2014.2356037

15. Takenaka, I., K. Ishikura, H. Takahashi, K. Hasegawa, K. Asano, and N. Iwata, "Improvement of intermodulation distortion asymmetry characteristics with wideband microwave signals in high power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 6, 1355-1363, 2008.
doi:10.1109/TMTT.2008.923365

16. Aaen, P. H., J. H. Pla, and J. Wood, Modeling and Characterization of RF and Microwave Power FETs, Cambridge University Press, 2007.
doi:10.1017/CBO9780511541124

17. Brinkhoff, J., A. E. Parker, and M. Leung, "Baseband impedance and linearization of FET circuits," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 12, 2523-2530, 2003.
doi:10.1109/TMTT.2003.819208

18. Feng, Y., Y. Liu, C. Yu, S. Li, J. Li, and X. Zheng, "Design of linearity improved asymmetrical GaN doherty power amplifier using composite right/left-handed transmission lines," Progress In Electromagnetics Research B, Vol. 53, 89-106, 2013.
doi:10.2528/PIERB13060502

19. Giofre, R., P. Colantonio, and F. Giannini, "A Doherty architecture with high feasibility and defined bandwidth behavior," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3308-3317, 2013.
doi:10.1109/TMTT.2013.2274432

20. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, 2009.
doi:10.1002/mmce.20350

21. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., Vol. 13, No. 2, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964

22. Haedong, J., P. Roblin, and C. Quindroit, "Adjustable load-modulation asymmetric Doherty amplifier design using nonlinear embedding," IEEE MTT-S Int. Microw. Symp., 1-4, 2014.

23. Moon, J., J. Kim, I. Kim, Y. Woo, S. Hong, J. Lee, and B. Kim, "GaN HEMT based Doherty amplifier for 3.5-GHz WiMAX applications," Proc. 37th Eur. Microw. Conf., 1193-1196, 2007.

24. Yang, M., J. Wang, J. Xia, Y. Sun, and X. Zhu, "High efficiency GaN wideband Doherty amplifier for LTE-advanced applications," Proc. Microw. Conf. 2011, 510-513, 2011.