Vol. 56
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-02-19
A Novel Range-Instantaneous-Doppler ISAR Imaging Algorithm for Maneuvering Targets via Adaptive Doppler Spectrum Extraction
By
Progress In Electromagnetics Research C, Vol. 56, 109-118, 2015
Abstract
A novel range-instantaneous-Doppler (RID) algorithm of inverse synthetic aperture radar (ISAR) imaging based on adaptive Doppler spectrum extraction is proposed in this paper. Regarding maneuvering targets, such as military aircraft, the ISAR image is blurred on cross-range domain when the range-Doppler (RD) algorithm is applied. The RID imaging method is often used to resolve the Doppler ambiguity, but there are some scatterers that could be lost because the sliced time is fixed in traditional RID imaging. To the method proposed in this paper, the optimal Doppler spectrum of each range bin is extracted by gradient energy function (GEF) after time-frequency (TF) analysis, and then all of the optimal Doppler spectrums are combined to obtain a final 2-D RID image of the target. Compared with the traditional RID method, the novel algorithm can obtain image with better focused quality. The results obtained from simulated and field-measured data verify the superiority of the proposed algorithm.
Citation
Lijie Fan, Si Shi, Yang Liu, Shi You Xu, and Zeng Ping Chen, "A Novel Range-Instantaneous-Doppler ISAR Imaging Algorithm for Maneuvering Targets via Adaptive Doppler Spectrum Extraction," Progress In Electromagnetics Research C, Vol. 56, 109-118, 2015.
doi:10.2528/PIERC14122501
References

1. Wehner, D. R., High-resolution Radar, 2nd Edition, Artech House, Norwood, MA, 1995.

2. Chen, C. C. and H. C. Andrews, "Target motion induced radar imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 16, No. 1, 2-14, 1980.
doi:10.1109/TAES.1980.308873

3. Park, J. I. and K. T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

4. Park, S.-H., J.-H. Lee, and K.-T. Kim, "Performance analysis of the scenario-based construction method for real target ISAR recognition," Progress In Electromagnetics Research, Vol. 128, 137-151, 2012.
doi:10.2528/PIER12032210

5. Hu, J. M., W. Zhou, and Y. W. Fu, "Uniform rotational motion compensation for ISAR based on phase cancellation," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 4, 636-640, 2011.
doi:10.1109/LGRS.2010.2098841

6. Du, L. P. and G. C. Su, "Adaptive inverse synthetic aperture radar imaging for nonuniformly moving targets," IEEE Geosci. Remote Sens. Lett., Vol. 2, No. 3, 247-249, 2005.
doi:10.1109/LGRS.2005.851540

7. Wang, Y. and Y. C. Jiang, "ISAR imaging of maneuvering target based on the L-class of fourth-order complex-lag PWVD," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1518-1527, 2010.
doi:10.1109/TGRS.2009.2032296

8. Wang, Y. and Y. C. Jiang, "Inverse synthetic aperture radar imaging of maneuvering target based on the product generalized cubic phase function," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 5, 958-962, 2011.
doi:10.1109/LGRS.2011.2143387

9. Berizzi, F., D. Mese, M. Diani, and M. Martorella, "High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: Modeling and performance analysis," IEEE Trans. Image Processing, Vol. 10, No. 12, 1180-1190, 2001.
doi:10.1109/83.974573

10. Lv, X. L., M. D. Xing, C. R. Wan, and S. H. Zhang, "ISAR imaging of maneuvering targets based on the range centroid Doppler technique," IEEE Trans. Image Processing, Vol. 19, No. 1, 141-153, 2010.
doi:10.1109/TIP.2009.2032892

11. Li, J., C.W. Qiu, and L. Zhang, "Time-frequency imaging algorithm for high speed spinning targets in two dimensions," IET Radar Sonar Navig., Vol. 4, No. 6, 806-817, 2010.
doi:10.1049/iet-rsn.2009.0172

12. Thayaparan, T., G. Lampropoulos, S. K. Wong, and E. Riseborough, "Application of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulation and measured radar data," IEE Proc. Radar Sonar Navig., Vol. 150, No. 4, 213-220, 2003.
doi:10.1049/ip-rsn:20030670

13. Munoz-Ferreras, J. M. and F. Perez-Martınez, "On the Doppler spreading effect for the range-instantaneous-Doppler technique in inverse synthetic aperture radar imagery," IEEE Geosci. Remote Sens. Lett., Vol. 7, No. 1, 180-184, 2010.
doi:10.1109/LGRS.2009.2030372

14. Park, J.-H. and N.-H. Myung, "Enhanced and efficient ISAR imaging focusing using the discrete gabor representation in an oversampling scheme," Progress In Electromagnetics Research, Vol. 138, 227-244, 2013.
doi:10.2528/PIER13022004

15. Wu, L., X. Z. Wei, H. Q. Wang, and X. Li, "ISAR imaging of targets with complex motion based on discrete chirp Fourier transform for cubic chirps," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 10, 4201-4212, 2012.
doi:10.1109/TGRS.2012.2189220

16. Matusiak, E., T. Michaeli, and Y. C. Eldar, "Noninvertible Gabor transforms," IEEE Trans. Signal Processing, Vol. 58, No. 5, 2597-2612, 2010.
doi:10.1109/TSP.2010.2042480

17. Qian, S. and D. P. Chen, "Discrete Gabor transform," IEEE Trans. Signal Processing, Vol. 41, No. 7, 2429-2438, 1993.
doi:10.1109/78.224251

18. Wang, J. F. and D. Kasilingam, "Global range alignment for ISAR," IEEE Trans. Aerosp. Electron. Syst., Vol. 39, No. 1, 351-357, 2003.
doi:10.1109/TAES.2003.1188917

19. Zhu, J. Y. and N. C. Wang, "Image quality assessment by visual gradient similarity," IEEE Trans. Image Processing, Vol. 21, No. 3, 919-933, 2012.
doi:10.1109/TIP.2011.2169971

20. Kim, D. O., H. S. Han, and R. H. Park, "Gradient information-based image quality metric," IEEE Trans. Consumer Electronics, Vol. 56, No. 2, 930-936, 2010.
doi:10.1109/TCE.2010.5506022

21. Kim, K. T. and H. T. Kim, "One-dimensional scattering centre extraction for efficient radar target classification," IEE Proc. Radar Sonar Navig., Vol. 146, No. 3, 147-158, 1999.
doi:10.1049/ip-rsn:19990321