Vol. 55
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-01-21
A Retrodirective Array with Reduced Surface Waves for Wireless Power Transfer Applications
By
Progress In Electromagnetics Research C, Vol. 55, 179-186, 2014
Abstract
A one-dimensional, dual frequency, active retrodirective array is proposed for wireless power transfer applications. Microstrip circular patch antennas with four shorting pins are used as array elements to suppress surface waves. The proposed design eliminates undesired coupling between array elements due to surface waves present in conventional microstrip antenna arrays in order to improve array performance. The antenna array uses circularly polarized microstrip elements with higher gain than conventional microstrip antennas. The proposed retrodirective array operates at 2.4GHz for the interrogating signal and 5.8GHz for the retransmitted signal, using up-converting mixers. The beam scanning inherent in retrodirective arrays ensures a constant power level available to the charging devices, regardless of their location within an angular sector over which retrodirectivity is achieved. A two-element experimental prototype provided uniform power density within a 60° angular sector. The Design procedure, simulation results and experimental measurements are presented.
Citation
Mohammad Fairouz, and Mohammad Saed, "A Retrodirective Array with Reduced Surface Waves for Wireless Power Transfer Applications," Progress In Electromagnetics Research C, Vol. 55, 179-186, 2014.
doi:10.2528/PIERC14102808
References

1. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, Sep. 1984.
doi:10.1109/TMTT.1984.1132833

2. O’Brien, K., R. Teichmann, and H. Gueldner, "Magnetic field generation in an inductively coupled radio-frequency power transmission system," 37th IEEE Power Electronics Specialists Conference, PESC’06, 1-7, Jun. 18--22, 2006.

3. Tesla, N., "The transmission of electric energy without wires," The 13th Anniversary Number of the Electrical World and Engineer, 1904.

4. Tseng, R., Method and apparatus for wireless power transmission, US Patent Application No. 11/901158, 2007.

5. Nishikawa, K. and T. Ishizaki, "Microwave-band wireless power transfer system using ceramic dielectric resonators," 2013 IEEE Wireless Power Transfer (WPT), 175-178, May 15--16, 2013.

6. Ishizaki, T. and K. Nishikawa, "Wireless power beam device using microwave power transfer," IEEE Wireless Power Transfer Conference (WPTC), 36-39, IEEE, 2014.

7. Takamiya, M., T. Sekitani, Y. Miyamoto, Y. Noguchi, H. Kawaguchi, T. Someya, and T. Sakurai, "Design solutions for a multi-object wireless power transmission sheet based on plastic switches," IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 362-609, 2007.

8. Rangelov, A. A., H. Suchowski, Y. Silberberg, and N. V. Vitanov, "Wireless adiabatic power transfer," Annals Phys., Vol. 326, 626-633, 2011.
doi:10.1016/j.aop.2010.11.008

9. Vandervoorde, G. and R. Puers, "Wireless energy transfer for standalone systems: A comparison between low and high power applicability," Sensors and Actuators, Vol. 92, 305-311, Nov. 2000.

10. Abbasi, M. I., S. Atif Adnan, M. Amin, and F. Kamran, "Wireless power transfer using microwaves at 2.45GHz ISM band," 2009 6th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 99-102, IEEE, 2009.

11. Li, Y. and V. Jandhyala, "Design of retrodirective antenna arrays for short-range wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 206-211, 2012.
doi:10.1109/TAP.2011.2167897

12. Fusco, V. and N. Buchanan, "Analysis and characterization of PLL-based retrodirective array," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 2, 730-738, 2005.
doi:10.1109/TMTT.2004.840620

13. Guo, Y. C., X. W. Shi, and L. Chen, "Retrodirective array technology," Progress In Electromagnetics Research B, Vol. 5, 153-167, 2008.
doi:10.2528/PIERB08021704

14. Pon, C. Y., "Retrodirective array using the heterodyne technique," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 2, 176-180, 1964.
doi:10.1109/TAP.1964.1138191

15. Miyamoto, R. Y. and T. Itoh, "Retrodirective arrays for wireless communications," IEEE Microwave Magazine, Vol. 3, No. 1, 71-79, 2001.
doi:10.1109/6668.990692

16. Rodenbeck, C., M. Li, and K. Chang, "A phased-array architecture for retrodirective microwave power transmission from the space solar power satellite," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1679-1682, Jun. 2004.

17. Shiroma, G. S., R. Y. Miyamoto, and W. A. Shiroma, "A full-duplex dual-frequency self-steering array using phase detection and phase shifting," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 128-134, Jan. 2006.
doi:10.1109/TMTT.2005.860330

18. Chen, L., X. W. Shi, T. L. Zhang, C. Y. Cui, and H. J. Lin, "Design of a dual-frequency retrodirective array," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 478-480, 2010.
doi:10.1109/LAWP.2010.2050855

19. Chen, L., T. L. Zhang, S. F. Liu, and X. W. Shi, "A bidirectional dual-frequency retrodirective array for full-duplex communication applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 771-774, 2012.
doi:10.1109/LAWP.2012.2206551

20. Zhu, Y., Y. Xie, Z. Lie, and T. Dang, "A novel method of mutual coupling matching for array antenna design," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1013-1014, 2007.

21. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, Aug. 1993.
doi:10.1109/8.244643

22. Bassilio, L. I., J. T. Williams, D. R. Jackson, and M. A. Khayat, "A comparative study for a new GPS reduced surface wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 233-236, 2005.
doi:10.1109/LAWP.2005.851105

23. Mehrotra, A. R., D. R. Jackson, J. T. Williams, and S. A. Long, "An annular-ring reduced surface wave microstrip antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 810-813, Aug. 1999.

24. Al-Ajmi, A. R. and S. F. Mahmoud, "A single-feed circularly-polarized patch antenna for reduced surface wave applications," Microwave and Optical Technology Letters, Vol. 51, No. 11, 2675-2679, 2009.
doi:10.1002/mop.24699

25. Mahmoud, S. F. and A. R. Al-Ajmi, "A novel microstrip patch antenna with reduced surface wave excitation," Progress In Electromagnetics Research, Vol. 86, 71-86, 2008.
doi:10.2528/PIER08092403

26. Alajmi, A. R. and M. Saed, "Simplified microstrip patch antenna design for reduced surface wave applications," IEEE Antennas and Propagation Society International Symposium, 1849-1850, 2014.

27. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.