1. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, Sep. 1984.
doi:10.1109/TMTT.1984.1132833
2. O’Brien, K., R. Teichmann, and H. Gueldner, "Magnetic field generation in an inductively coupled radio-frequency power transmission system," 37th IEEE Power Electronics Specialists Conference, PESC’06, 1-7, Jun. 18--22, 2006.
3. Tesla, N., "The transmission of electric energy without wires," The 13th Anniversary Number of the Electrical World and Engineer, 1904.
4. Tseng, R., Method and apparatus for wireless power transmission, US Patent Application No. 11/901158, 2007.
5. Nishikawa, K. and T. Ishizaki, "Microwave-band wireless power transfer system using ceramic dielectric resonators," 2013 IEEE Wireless Power Transfer (WPT), 175-178, May 15--16, 2013.
6. Ishizaki, T. and K. Nishikawa, "Wireless power beam device using microwave power transfer," IEEE Wireless Power Transfer Conference (WPTC), 36-39, IEEE, 2014.
7. Takamiya, M., T. Sekitani, Y. Miyamoto, Y. Noguchi, H. Kawaguchi, T. Someya, and T. Sakurai, "Design solutions for a multi-object wireless power transmission sheet based on plastic switches," IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 362-609, 2007.
8. Rangelov, A. A., H. Suchowski, Y. Silberberg, and N. V. Vitanov, "Wireless adiabatic power transfer," Annals Phys., Vol. 326, 626-633, 2011.
doi:10.1016/j.aop.2010.11.008
9. Vandervoorde, G. and R. Puers, "Wireless energy transfer for standalone systems: A comparison between low and high power applicability," Sensors and Actuators, Vol. 92, 305-311, Nov. 2000.
10. Abbasi, M. I., S. Atif Adnan, M. Amin, and F. Kamran, "Wireless power transfer using microwaves at 2.45GHz ISM band," 2009 6th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 99-102, IEEE, 2009.
11. Li, Y. and V. Jandhyala, "Design of retrodirective antenna arrays for short-range wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 206-211, 2012.
doi:10.1109/TAP.2011.2167897
12. Fusco, V. and N. Buchanan, "Analysis and characterization of PLL-based retrodirective array," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 2, 730-738, 2005.
doi:10.1109/TMTT.2004.840620
13. Guo, Y. C., X. W. Shi, and L. Chen, "Retrodirective array technology," Progress In Electromagnetics Research B, Vol. 5, 153-167, 2008.
doi:10.2528/PIERB08021704
14. Pon, C. Y., "Retrodirective array using the heterodyne technique," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 2, 176-180, 1964.
doi:10.1109/TAP.1964.1138191
15. Miyamoto, R. Y. and T. Itoh, "Retrodirective arrays for wireless communications," IEEE Microwave Magazine, Vol. 3, No. 1, 71-79, 2001.
doi:10.1109/6668.990692
16. Rodenbeck, C., M. Li, and K. Chang, "A phased-array architecture for retrodirective microwave power transmission from the space solar power satellite," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1679-1682, Jun. 2004.
17. Shiroma, G. S., R. Y. Miyamoto, and W. A. Shiroma, "A full-duplex dual-frequency self-steering array using phase detection and phase shifting," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 128-134, Jan. 2006.
doi:10.1109/TMTT.2005.860330
18. Chen, L., X. W. Shi, T. L. Zhang, C. Y. Cui, and H. J. Lin, "Design of a dual-frequency retrodirective array," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 478-480, 2010.
doi:10.1109/LAWP.2010.2050855
19. Chen, L., T. L. Zhang, S. F. Liu, and X. W. Shi, "A bidirectional dual-frequency retrodirective array for full-duplex communication applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 771-774, 2012.
doi:10.1109/LAWP.2012.2206551
20. Zhu, Y., Y. Xie, Z. Lie, and T. Dang, "A novel method of mutual coupling matching for array antenna design," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1013-1014, 2007.
21. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, Aug. 1993.
doi:10.1109/8.244643
22. Bassilio, L. I., J. T. Williams, D. R. Jackson, and M. A. Khayat, "A comparative study for a new GPS reduced surface wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 233-236, 2005.
doi:10.1109/LAWP.2005.851105
23. Mehrotra, A. R., D. R. Jackson, J. T. Williams, and S. A. Long, "An annular-ring reduced surface wave microstrip antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 810-813, Aug. 1999.
24. Al-Ajmi, A. R. and S. F. Mahmoud, "A single-feed circularly-polarized patch antenna for reduced surface wave applications," Microwave and Optical Technology Letters, Vol. 51, No. 11, 2675-2679, 2009.
doi:10.1002/mop.24699
25. Mahmoud, S. F. and A. R. Al-Ajmi, "A novel microstrip patch antenna with reduced surface wave excitation," Progress In Electromagnetics Research, Vol. 86, 71-86, 2008.
doi:10.2528/PIER08092403
26. Alajmi, A. R. and M. Saed, "Simplified microstrip patch antenna design for reduced surface wave applications," IEEE Antennas and Propagation Society International Symposium, 1849-1850, 2014.
27. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.