Vol. 55
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-12-11
An Approach for Efficient Two-Stage 2D-DOA Estimation in High-Altitude Platforms Mobile Communications
By
Progress In Electromagnetics Research C, Vol. 55, 115-127, 2014
Abstract
High-Altitude Platform (HAP) is a promising technique for providing wireless communications services with improved performance compared to terrestrial and satellite systems. A critical issue in this emerging system is the difficulty of providing user location information through two-dimensional direction-of-arrival (2D-DOA) estimation due to the high computational complexity and the large covered area. Therefore, in this paper, an efficient technique has been proposed to determine user location through 2D-DOA with a reduced processing time. The proposed technique estimates the 2D-DOA in two stages. In the first stage, a low-resolution 2D-DOA estimation technique will be utilized, such as Bartlett algorithm performed on a low-resolution distance grid, then a suitable threshold is applied on the normalized Bartlett 2D-DOA spectrum to define ground windows for the next high-resolution 2D-DOA stage. The second stage is carried out by a high-resolution technique such as MUSIC algorithm and will be performed on a high-resolution distance grid. Two scenarios are examined for the proposed technique to investigate the reduction in processing time compared with the conventional 2D-DOA MUSIC algorithm without windowing. Simulation results show that at 40 meters resolution, the required processing time is only 20% of the conventional MUSIC algorithm and can be further reduced to 4% at resolution of 100 meters at the same array size. In addition, the proposed technique can be applied to any other efficient low-complexity 2D-DOA algorithms.
Citation
Yasser Albagory, "An Approach for Efficient Two-Stage 2D-DOA Estimation in High-Altitude Platforms Mobile Communications," Progress In Electromagnetics Research C, Vol. 55, 115-127, 2014.
doi:10.2528/PIERC14102401
References

1. Pavlidou, F. N., M. Ruggieri, M. Gerla, and R. Miura, "Communications via high altitude platforms: Technologies and trials," International Journal of Wireless Information Networks, Vol. 13, No. 1, 1-4, Jan. 2006.
doi:10.1007/s10776-005-0019-5

2. Mohammed, A., S. Arnon, D. Grace, M. Mondin, and R. Muira, "Advanced communication techniques and applications for high altitude platforms," EURASIP International Journal of Communications and Networking, Vol. 2008, 934837, 2008.

3. Mohammed, A., A. Mehmood, F. N. Pavlidou, and M. Mohorcic, "The role of high-altitude platforms (HAPs) in the wireless global connectivity," Proceedings of the IEEE, Vol. 99, No. 11, 1939-1953, Nov. 2011.
doi:10.1109/JPROC.2011.2159690

4. Kim, J., D. Lee, J. Ahn, D. S. Ahn, and B. J. Ku, "Is HAPS viable for the next-generation telecommunication platforms in Koria," EURASIP International Journal of Communications and Networking, Vol. 2008, 596383, 2008, Doi: 1155/2008/596383.

5. Dessouky, M., H. Sharshar, and Y. Albagory, "Improving the cellular coverage from a high altitude platform by novel tapered beamforming technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1721-1731, 2007.

6. Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, Global Positioning System Theory and Practice, 2nd Edition, 1993, Print ISBN: 978-3-211-82477-1, Online ISBN: 978-3-7091-3293-7.

7. Krim, H. and M. Viberg, "Two decades of array signal processing research," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, Jul. 1996.
doi:10.1109/79.526899

8. Harabi, F., A. Gharsallah, and S. Marcos, "Three-dimensional antennas array for the estimation of direction of arrival," IET Microwaves, Antennas & Propagation, Vol. 3, No. 5, 843-849, Aug. 2009.
doi:10.1049/iet-map.2008.0234

9. Zhang, X., M. Zhou, H. Chen, and J. Li, "Two-dimensional DOA estimation for acoustic vectorsensor array using a successive MUSIC," Multidimensional Systems and Signal Processing, Vol. 25, No. 3, 583-600, Jul. 2014.

10. Agatonovic, M., Z. Stankovi´c, I. Milovanovi´c, N. Donˇcov, L. Sit, T. Zwick, and B. Milovanovic, "Efficient neural network approach for 2D DOA estimation based on antenna array measurements," Progress In Electromagnetics Research, Vol. 137, 741-758, 2013.
doi:10.2528/PIER13012114

11. Diab, W. G. and H. M. Elkamchouchi, "A deterministic approach for 2D-DOA estimation based on a V-shaped array and a virtual array concept," IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2008, 1-5, 2008.

12. Lee, J., I. Song, H. Kwona, and S. R. Lee, "Low-complexity estimation of 2D DOA for coherently distributed sources," Signal Processing, Vol. 83, No. 8, 1789-1802, Aug. 2003.
doi:10.1016/S0165-1684(03)00103-8

13. Schulz, D. and R. S. Thomae, "Search-based MUSIC techniques for 2D DOA estimation using EADF and real antenna arrays," WSA 2013 — 17th International ITG Workshop on Smart Antennas, 1-8, Stuttgart, Deutschland, 2013.

14. Raich, R., J. Goldberg, and H. Messer, "Bearing estimation for a distributed source via the conventional beamformer," Ninth IEEE SP Workshop on Statistical Signal and Array Processing, Proceedings, 5-8, Sep. 14-16, 1998.

15. Zhang, X., J. Li, and L. Xu, "Novel two-dimensional DOA estimation with L-shaped array," EURASIP Journal on Advances in Signal Processing, Vol. 2011, 50, Aug. 2011.