Vol. 56
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-02-03
Effect of Second and Third Harmonic Input Impedances in a Class-F Amplifier
By
Progress In Electromagnetics Research C, Vol. 56, 39-53, 2015
Abstract
In this paper, the design of a class-F radio frequency power amplifier with a multiharmonic input transmission line network is presented. Harmonic signal components at the gate come from several sources including nonlinear device capacitances and imperfect output harmonic terminations that create harmonic components that are fed back to the gate through the gate-drain capacitance. The effect of these harmonic generation mechanisms and the potential to shape the gate waveform to improve power efficiency are investigated. The study shows that a second harmonic short is most beneficial and the effect of a third harmonic termination is small. The concepts are applied to the design of a 10 W GaN class-F amplifier and the design is supported by theoretical, simulation and experimental results. The fabricated design has a measured drain efficiency of 78.8% at an output power of 40.5 dBm for a frequency of 990 MHz. The amplifier was also tested with a 8.8 dB peak-to-average power ratio 5 MHz WCDMA signal. With the modulated signal, the adjacent channel power ratio was -33.1 dBc at a drain efficiency of 46.1% without predistortion correction.
Citation
Sadegh Abbasian, and Thomas Johnson, "Effect of Second and Third Harmonic Input Impedances in a Class-F Amplifier," Progress In Electromagnetics Research C, Vol. 56, 39-53, 2015.
doi:10.2528/PIERC14101410
References

1. Raab, F. H., "Class-F power amplifiers with maximally flat waveforms," IEEE Trans. Microwave Theory, Vol. 45, No. 11, 2007-2012, 1997.
doi:10.1109/22.644215

2. Carrubba, V., A. L. Clarke, M. Akmal, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "On the extension of the continuous class-F mode power amplifier," IEEE Trans. Microwave Theory, Vol. 59, No. 5, 1294-1303, 2011.
doi:10.1109/TMTT.2011.2117435

3. Chen, K. and D. Peroulis, "A 3.1-GHz class-F power amplifier with 82% power-added-efficiency," Microwave and Wireless Components Letters, Vol. 23, No. 8, 436-438, 2013.
doi:10.1109/LMWC.2013.2271295

4. Hwang, T., K. Azadet, R. Wilson, and J. Lin, "Characterization of class-F power amplifier with wide amplitude and phase bandwidth for outphasing architecture," Microwave and Wireless Components Letters, Vol. 24, No. 3, 188-190, 2014.
doi:10.1109/LMWC.2013.2292929

5. Kim, J. and Y. Park, "Design of a compact and broadband inverse class-F-1 power amplifier," Progress In Electromagnetics Research C, Vol. 46, 75-81, 2014.
doi:10.2528/PIERC13112404

6. He, T. and U. Balaji, "Design of a class F power amplifier," PIERS Online, Vol. 6, No. 2, 141-144, 2010.
doi:10.2529/PIERS090829215408

7. Mediano, A. and N. Sokal, "A Class-E RF power amplifier with a flat-top transistor-voltage waveform," IEEE Trans. Power Electronics, Vol. 28, No. 11, 5215-5221, 2013.
doi:10.1109/TPEL.2013.2242097

8. Abbasian, S. and T. Johnson, "RF current mode class-D power amplifiers under periodic and non-periodic switching conditions," International Symposium on Circuits and Systems (ISCAS), 610-613, 2013.

9. Moon, J., S. Jee, J. Kim, and B. Kim, "Behaviours of class-F and class-F-1 amplifiers," IEEE Trans. Microwave Theory, Vol. 60, No. 6, 1937-1951, 2012.
doi:10.1109/TMTT.2012.2190749

10. Ramadan, A., T. Reveyrand, A. Martin, J. M. Nebus, P. Bouysse, L. Lapierre, J. F. Villemazet, and S. Forestier, "Experimental study on effect of second-harmonic injection at input of classes F and F-1 GaN power amplifiers," Electronics Letters, Vol. 46, No. 8, 570-572, 2010.
doi:10.1049/el.2010.0392

11. White, P., "Effect of input harmonic terminations on high efficiency class-B and class-F operation of PHEMT devices," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, 1611-1614, 1998.

12. Goto, S., T. Kunii, A. Ohta, A. Inoue, Y. Hosokawa, R. Hattori, and Y. Mitsui, "Effect of bias condition and input harmonic termination on high e±ciency inverse class-F amplifiers," 31st European Microwave Conference (EuMC), 1-4, 2001.

13. Colantonio, P., F. Giannini, G. Leuzzi, and E. Limiti, "Theoretical facet and experimental results of harmonic tuned PAs," Int. J. RF Microw. Comput.-Aided Eng., Vol. 13, No. 6, 459-472, 2003.
doi:10.1002/mmce.10106

14. Colantonio, P., F. Giannini, and E. Limiti, "An approach to harmonic load- and source-pull measurements for high-efficiency PA design," IEEE Trans. Microwave Theory, Vol. 52, No. 1, 191-198, 2004.
doi:10.1109/TMTT.2003.821276

15. Colantonio, P., F. Giannini, G. Leuzzi, and E. Limiti, "Multiharmonic manipulation for highly efficient microwave power amplifiers," Int. J. RF Microw. Comput.-Aided Eng., Vol. 11, 366-384, 2001.
doi:10.1002/mmce.1045

16. Gao, S., P. Butterworth, S. Ooi, and A. Sambell, "High-efficiency power amplifier design including input harmonic termination," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 81-83, 2005.
doi:10.1109/LMWC.2005.863171

17. Lovelace, D., J. Costa, and N. Camilleri, "Extracting small-signal model parameters of silicon MOSFET transistors," EEE MTT-S Dig., 865-868, 1994.

18. CGH60015D Datasheet, Rev. 3.1, , Cree, Inc. 2012.

19. Colantonio, P., F. Giannini, and E. Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers, John Wiley & Sons, Inc., 2009.
doi:10.1002/9780470746547

20. Woo, Y., Y. Yang, and B. Kim, "Analysis and experiments for high-efficiency Class-F and inverse Class-F power amplifiers," Class-F power amplifiers, Vol. 54, No. 5, 1969-1974, 2006.

21. Vadala, V., A. Raffo, S. Di Falco, G. Bosi, A. Nalli, and G. Vannini, "A load pull characterization technique accounting for harmonic tuning," IEEE Trans. Microwave Theory, Vol. 61, No. 7, 2695-2704, 2013.
doi:10.1109/TMTT.2013.2262803

22. Dambrine, G., A. Cappy, F. Heliodore, and E. Playez, "A new method for determining the FET small-signal equivalent circuit," IEEE Trans. Microwave Theory, Vol. 36, No. 7, 1151-1159, 1998.
doi:10.1109/22.3650

23. Jarndal, A. and G. Kompa, "A new small-signal modeling approach applied to GaN devices," IEEE Trans. Microwave Theory, Vol. 53, No. 11, 3440-3448, 2005.
doi:10.1109/TMTT.2005.857332

24. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "A design technique for concurrent dual band harmonic tuned power amplifier," IEEE Trans. Microwave Theory, Vol. 56, No. 11, 2545-2555, 2008.
doi:10.1109/TMTT.2008.2004897

25. Rollett, J., "Stability and power-gain invariants of linear twoports," IEEE Trans. Circuit Theory, Vol. 9, No. 1, 29-32, 1962.
doi:10.1109/TCT.1962.1086854

26. Nemati, H., C. Fager, M. Thorsell, and H. Zirath, "High-efficiency LDMOS power-amplifier design at 1 GHz using an optimized transistor model," IEEE Trans. Microwave Theory, Vol. 57, No. 7, 1647-1654, 2009.
doi:10.1109/TMTT.2009.2022590

27. Saad, P., C. Fager, H. Nemati, H. Cao, H. Zirath, and K. Andersson, "A highly efficient 3.5 GHz inverse class-F GaN HEMT power amplifier," Int. J. of Microwave and Wireless, Vol. 2, No. 3-4, 317-324, 2010.
doi:10.1017/S1759078710000395

28. Saad, P., C. Fager, H. Cao, H. Zirath, and K. Andersson, "Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier," IEEE Trans. Microwave Theory, Vol. 58, No. 7, 1677-1685, 2010.
doi:10.1109/TMTT.2010.2049770

29. Bassam, S. A., M. Helaoui, and F. M. Ghannouchi, "2-D Digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters," IEEE Trans. Microwave Theory, Vol. 59, No. 10, 2547-2553, 2011.
doi:10.1109/TMTT.2011.2163802

30. Yu, X. and H. Jiang, "Digital predistortion using adaptive basis functions," IEEE Trans. Circuits Syst. I, Vol. 60, No. 12, 3317-3327, 2013.
doi:10.1109/TCSI.2013.2265958