Vol. 55
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-11-21
Accurate Coupling Matrix Synthesis for Microwave Filters with Random Initial Value
By
Progress In Electromagnetics Research C, Vol. 55, 53-61, 2014
Abstract
A hybrid optimization method that synthesizes coupling matrices for cross-coupled microwave filters is presented. This method consists of a general solvopt algorithm and fmincon algorithm, respectively. To avoid divergence from the coupling matrix, two cost functions are built, where the first one is constructed from the eigenvalues of the coupling matrix and its principal sub-matrices, while another one is dependent on the determinant of the coupling matrix and one of its cofactors. The values of non-zero elements of the coupling matrix serve as the independent variables to minimize the cost functions by using solvopt and fmincon. Although the stochastic initial values are not sufficiently close to the global optimum, the hybrid optimization procedure is still robust to find multiple coupling matrices to overcome the initial problem. It is significant that the suitable coupling matrix can be chosen from the multiple solutions to meet the given requirements in practice. For demonstrating the proposed hybrid optimization algorithm, some extraordinary prototype topologies are provided which validate the efficiency of the proposed synthesis procedure.
Citation
Guo Hui Li, "Accurate Coupling Matrix Synthesis for Microwave Filters with Random Initial Value," Progress In Electromagnetics Research C, Vol. 55, 53-61, 2014.
doi:10.2528/PIERC14101401
References

1. Atia, A. E. and A. E. Williams, "New type of waveguide bandpass filters for satellite transponders," COMSAT Tech. Rev., Vol. 1, No. 1, 21-43, Jan. 1971.

2. Atia, A. and A. Williams, "Narrow-bandpass waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 20, No. 4, 258-265, Apr. 1972.
doi:10.1109/TMTT.1972.1127732

3. Cameron, R., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 4, 433-442, Apr. 1999.
doi:10.1109/22.754877

4. Macchiarella, G., "Accurate synthesis of in-line prototype filters using cascaded triplet and quadruplet sections," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1779-1783, Jul. 2002.
doi:10.1109/TMTT.2002.800429

5. Amari, S., "Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1559-1564, Sep. 2000.
doi:10.1109/22.869008

6. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Fast synthesis of coupled-resonator filters," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 4, 174-176, Apr. 2004.
doi:10.1109/LMWC.2004.827111

7. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 6, 312-315, Jun. 2012.
doi:10.1109/LMWC.2012.2197386

8. Jayyousi, A. B. and M. J. Lancaster, "A gradient-based optimization technique employing determinants for the synthesis of microwave coupled filters," IEEE MTT-S Int. Microw. Symp. Dig., 1369-1372, 2004.

9. Uhm, M., S. Nam, and J. Kim, "Synthesis of resonator filters with arbitrary topology using hybrid method," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2157-2167, Oct. 2007.

10. Nicholson, G. L. and M. J. Lancaster, "Coupling matrix synthesis of cross-coupled microwave filters using a hybrid optimisation algorithm," IET Microw. Antennas Propag., Vol. 3, No. 6, 950-958, Sep. 2009.
doi:10.1049/iet-map.2008.0145