Vol. 53
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-08-20
Reduction of Mutual Coupling Between Cavity-Backed Slot Antenna Elements
By
Progress In Electromagnetics Research C, Vol. 53, 27-34, 2014
Abstract
Maintaining mutual coupling suppressing structure as simple as possible is becoming attractive in the electromagnetic and antenna community. A novel parasitic patch structure that can reduce mutual coupling between cavity-backed slot antenna elements is proposed and studied. The structure consists of only a simple rectangular patch inserted between the antenna elements and it is therefore low cost and straightforward to fabricate. The proposed structure can not only suppress the surface-mode propagation and reduce mutual coupling between slot antennas, but also improve radiation patterns. The features include small occupied area and very simple structure.
Citation
Qi-Chun Zhang, Jindong Zhang, and Wen Wu, "Reduction of Mutual Coupling Between Cavity-Backed Slot Antenna Elements," Progress In Electromagnetics Research C, Vol. 53, 27-34, 2014.
doi:10.2528/PIERC14052908
References

1. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618

2. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z. Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microw. Antennas Propag., Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154

3. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch designs that do not excite surface waves," IEEE Trans. Antennas Propag., Vol. 41, No. 8, 1026-1037, Aug. 1993.
doi:10.1109/8.244643

4. Khayat, M. A., J. T. Williams, D. R. Jackson, and S. A. Long, "Mutual coupling between reduced surface-wave microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 10, 1581-1593, Oct. 2000.
doi:10.1109/8.899675

5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

6. Yang, L., M. Y. Fan, F. L. Chen, J. Z. She, and Z. H. Feng, "A novel compact electromagnetic-bandgap (EBG) Structure and its applications for microwave circuits," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 183-190, Jan. 2005.

7. Coulombe, M., K. S. Farzaneh, and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1076-1086, Apr. 2010.
doi:10.1109/TAP.2010.2041152

8. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433

9. Gauthier, G. P., A. Courtay, and G. H. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrate," IEEE Trans. Antennas Propag., Vol. 45, No. 8, 1310-1314, Aug. 1997.
doi:10.1109/8.611252

10. Papapolymerou, I., R. F. Frayton, and L. P. B. Katehi, "Micromachined patch antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 2, 275-283, Feb. 1998.
doi:10.1109/8.660973

11. Colburn, J. S. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Trans. Antennas Propag., Vol. 47, No. 12, 1785-1794, Dec. 1999.
doi:10.1109/8.817654

12. Li, Z., Z. Du, M. Takahashi, K. Satio, and K. Ito, "Reduction mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 473-481, Feb. 2012.
doi:10.1109/TAP.2011.2173432

13. Li, Q. and Z. Shen, "Inverted microstrip-fed cavity-backed slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 1, 190-192, 2002.

14. Zheng, B. and Z. Shen, "Effect of a finite ground plane on microstrip-fed cavity-backed slot antenna," IEEE Trans. Antennas Propagat., Vol. 53, 862-865, Feb. 2005.
doi:10.1109/TAP.2004.841278

15. Liu, Y. and Z. Shen, "A compact dual-band cavity-backed slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 5, 4-6, 2006.
doi:10.1109/LAWP.2005.863611

16. Ko, S. C. K. and R. D. Murch, "A diversity antenna for external mounting on wireless handsets," IEEE Trans. Antennas Propagat., Vol. 49, 840-842, May 2001.
doi:10.1109/8.929639

17. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, 147-172, Nov. 1987.