Vol. 51
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-06-16
A Fast Hybrid WCIP and Fdtlm Approach to Study Inhomogeneous Circuits
By
Progress In Electromagnetics Research C, Vol. 51, 55-62, 2014
Abstract
The hybrid approach based on the coupling of the Wave Concept Iterative Procedure method and the Frequency Domain Transmission Line Matrix method is improved. The proposed method reduces the computation time by solving waves at the planar circuit interface: the volumic method is replaced by an equivalent surface condition. Thanks to this new approach, planar circuits presenting inhomogeneous dielectric substrates are studied. The proposed approach is compared to other methods on several examples.
Citation
Asmaa Zugari, Nathalie Raveu, Caroline Girard, Henri Baudrand, and Mohsine Khalladi, "A Fast Hybrid WCIP and Fdtlm Approach to Study Inhomogeneous Circuits," Progress In Electromagnetics Research C, Vol. 51, 55-62, 2014.
doi:10.2528/PIERC14051508
References

1. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method," IEE Proc. --- Microw. Antennas Propag., Vol. 135, No. 3, 231-236, Jun. 2006.
doi:10.1049/ip-map:20050028

2. Azizi, M., H. Aubert, and H. Baudrand, "A new iterative method for scattering problems," European Microwave Conf. Proc., Vol. 1, 255-258, Bologna, Italy, 1995.

3. N'gongo, R. S. and H. Baudrand, "A new approach for microstrip active antennas using modal FFT-algorithm," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1700-1703, Orlando, USA, 1999.

4. Hoefer, W. J. R., "The transmission-line matrix method --- Theory and applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, No. 10, 882-893, Oct. 1985.
doi:10.1109/TMTT.1985.1133146

5. Jin, H. and R. Vahldieck, "A frequency domain TLM method," IEEE MTT-S International Microwave Symposium Digest, 775-778, Albuquerque, USA, 1992.

6. Jin, H. and R. Vahldieck, "The frequency-domain transmission line matrix method --- A new concept," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 12, 2207-2218, Dec. 1992.
doi:10.1109/22.179882

7. Jin, H. and R. Vahldieck, "Direct derivations of TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell's equations using centered differencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2554-2561, Dec. 1994.
doi:10.1109/22.339796

8. Jin, H. and R. Vahldieck, "A new frequency-domain TLM symmetrical condensed node derived directly from Maxwell's equations," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 487-490, Orlando, USA, 1995.

9. Johns, D. and C. Christopoulos, "New frequency-domain TLM method for the numerical solution of steady-state electromagnetic problems," IEE Proc. Sci. Meas. Technol., Vol. 141, No. 4, 310-316, 1994.
doi:10.1049/ip-smt:19941063

10. Fichtner, N., S. Wane, D. Bajon, and P. Russer, "Interfacing the TLM and the TWF method using a diakoptics approach," IEEE MTT-S International Microwave Symposium Digest, 57-60, Atlanta, USA, Jun. 2008.

11. Glaoui, M., H. Trabelsi, H. Zairi, A. Gharsallah, and H. Baudrand, "A new computationally efficient hybrid FDTLM-WCIP method," International Journal of Electronics, Vol. 96, No. 5, 537-548, 2009.
doi:10.1080/00207210902738059

12. Glaoui, M., H. Zairi, and H. Trabelsi, "Contribution to the study of the planar circuits by a hybrid method (iterative method + FDTLM Method)," 5th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications, Tunisia, Mar. 22-26, 2009.

13. Titaouine, M., A. Gomes Neto, H. Baudrand, and F. Djahli, "WCIP method applied to active frequency selective surfaces," Journal of Microwave and Optoelectronics, Vol. 6, No. 1, 1-16, Jun. 2007.

14. Wane, S., D. Bajon, H. Baudrand, and P. Gamand, "A new full-wave hybrid differential-integral approach for the investigation of multilayer structures including nonuniformly doped diffusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 200-214, Jan. 2005.
doi:10.1109/TMTT.2004.839905

15. Zugari, A., M. Khalladi, M. I. Yaich, N. Raveu, and H. Baudrand, "A new approach: WCIP and FDTLM hybridization," Mediterranean Microwave Symposium (MMS), Tanger, Marocco, Nov. 15-17, 2009.

16. Girard, C., A. Zugari, and N. Raveu, "2D FDTLM hybridization with modal method," Progress In Electromagnetics Research B, Vol. 55, 23-44, 2013.
doi:10.2528/PIERB13060311

17. Saad, Y. and M. Schultz, "A generalized minimal residual algorithm for solving non symmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, 1986.
doi:10.1137/0907058

18. Raveu, N. and H. Baudrand, "Improvement of the WCIP convergence," IEEE APS, International Symposium on Antennas and Propagation and USNC/URSI National Radio Science, 1-4, Charleston, USA Jun. 2009.

19. Raveu, N., L. Giraud, and H. Baudrand, "WCIP acceleration," Asia-Paci¯c Microwave Conference Proceedings (APMC), 971-974, Dec. 7-10, 2010.

20. Raveu, N., J. Vincent, J. -R. Poirier, R. Perrussel, and L. Giraud, "Physically-based preconditioner for the WCIP," Asia-Pacific Microwave Conference Proceedings (APMC), 1310-1312, Kaohsiung, Taiwan, Dec. 4-7, 2012.