Vol. 52
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-07-18
Design of Fragment-Type Isolation Structures for MIMO Antennas
By
Progress In Electromagnetics Research C, Vol. 52, 71-82, 2014
Abstract
Fragment structure should find its application in acquiring high isolation between multiple-input multiple-output (MIMO) antennas. By gridding a design space into fragment cells, a fragment-type isolation structure can be constructed by metalizing some of the fragment cells. For MIMO isolation design, cells to be metalized can be selected by optimization searching scheme with objectives such as isolation, return losses, and even radiation patterns of MIMO antennas. Due to the exibility of fragment-type isolation structure, fragment-type structure has potentials to yield isolation higher than canonical isolation structures. In this paper, multi-objective evolutionary algorithm based on decomposition combined with genetic operators (MOEA/D-GO) is applied to design fragment-type isolation structures for MIMO patch antennas and MIMO PIFAs. It is demonstrated that isolation can be improved to different extents by using fragment-type isolation design. Some technique aspects related to the fragment-type isolation design, such as effects of fragment cell size, design space, density of metal cells, and efficiency consideration, are further discussed.
Citation
Lu Wang, Gang Wang, and Johan Siden, "Design of Fragment-Type Isolation Structures for MIMO Antennas," Progress In Electromagnetics Research C, Vol. 52, 71-82, 2014.
doi:10.2528/PIERC14051504
References

1. Clerckx, B., C. Craeye, D. Vanhoenacker-Janvier, and C.Oestges, "Impact of antennas coupling on 2 x 2 MIMO communications," IEEE Trans. Veh. Technol., Vol. 56, No. 3, 1009-1018, May 2007.
doi:10.1109/TVT.2007.895545

2. Bialkowski, M. E., P. Uthansakul, K. Bialkowski, and S. Durrani, "Investigating the performance of MIMO systems from an electromagnetic perspective," Microw. Opt. Tech. Lett., Vol. 48, No. 7, 1233-1238, Jul. 2006.
doi:10.1002/mop.21664

3. Li, Z., Z. Du, M. Takahashi, K. Saito, and K. Ito, "Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 473-481, Feb. 2012.
doi:10.1109/TAP.2011.2173432

4. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Collocated microstrip antennas for MIMO systems with a low mutual coupling using mode confinement," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 589-592, Feb. 2010.
doi:10.1109/TAP.2009.2037690

5. Yang, F. and Y. Rahmat-Smaii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array application," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

6. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618

7. Ouyang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," EEE Antennas Wirel. Propag. Lett., Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310

8. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

9. Saenz, E., I. Ederra, R. Gonzelo, S. Pivnenko, O. Breinbjerg, and P. de Maggt, "Coupling reduction between dipole antenna elements by using a planar meta-surface," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 383-394, Feb. 2009.
doi:10.1109/TAP.2008.2011249

10. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, Sep. 2010.
doi:10.1109/TAP.2010.2052560

11. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317

12. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 3433-3441, Dec. 2007.
doi:10.1109/TAP.2007.910353

13. Dumanli, S., C. J. Railton, and D. L. Paul, "A slot antenna array with low mutual coupling for use on small mobile terminals," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1512-1520, May 2011.
doi:10.1109/TAP.2011.2123057

14. Zhang, S., B. K. Lau, Y. Tan, Z. Ying, and S. He, "Mutual coupling reduction of two PIFA with a T-shape slot impedance transformer for MIMO mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1521-1531, Mar. 2012.
doi:10.1109/TAP.2011.2180329

15. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electron. Lett., Vol. 36, 2057-2058, Dec. 2000.
doi:10.1049/el:20001452

16. Herscovici, N., M. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas Wirel. Propag. Lett., Vol. 1, 94-97, Jan. 2002.
doi:10.1109/LAWP.2002.805128

17. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A recon¯gurable aperture antenna based on switched links between electrically small metallic patches," EEE Trans. Antennas Propag., Vol. 52, 1434-1445, Jun. 2004.
doi:10.1109/TAP.2004.825648

18. Ethier, J., D. McNamara, M. Chaharmir, and J. Shaker, "Re°ectarray design using similarity-shaped fragmented sub-wavelength elements," Electron. Lett., Vol. 48, 900-902, 2012.
doi:10.1049/el.2012.1457

19. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, 1939-1945, Jun. 2005.
doi:10.1109/TAP.2005.848461

20. John, M. and M. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 447-449, 2007.
doi:10.1109/LAWP.2007.891962

21. Ding, D. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013.
doi:10.2528/PIERM13071610

22. Blanch, S., J. Romeu, and I. Corbell, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, May 2003.
doi:10.1049/el:20030495

23. Shin, H. and J. H. Lee, "Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole," IEEE Trans. Inform. Theory, Vol. 49, No. 10, 2636-2647, Oct. 2003.
doi:10.1109/TIT.2003.817439

24. Chae, S. H., S.-K. Oh, and S.-O. Park, "Analysis of mutual coupling correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 122-125, 2007.
doi:10.1109/LAWP.2007.893109