Vol. 50
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-05-16
A Millimeter-Wave Wideband High-Gain Antenna Based on the Fabry-Perot Resonator Antenna Concept
By
Progress In Electromagnetics Research C, Vol. 50, 103-111, 2014
Abstract
A compact millimeter-wave (MMW) wideband high-gain antenna is proposed and implemented. The development is based on the design principle of wideband Fabry-Perot resonator antennas (FPRAs). The antenna consists of three dielectric slabs and a PEC ground, and it is fed by a rectangular waveguide. All slabs are used to form the superstrate that exhibits the increasing reflection phase at the designed frequency band. Size reduction of the superstrate is carried out to enhance the bandwidth of the antenna. The effect of ground size and resonant frequency shift due to size reduction of the superstrate were studied. A wide bandwidth of over 30% was finally obtained, and measurements of the fabricated prototype validate the theory and simulation results.
Citation
Yuehe Ge, and Can Wang, "A Millimeter-Wave Wideband High-Gain Antenna Based on the Fabry-Perot Resonator Antenna Concept," Progress In Electromagnetics Research C, Vol. 50, 103-111, 2014.
doi:10.2528/PIERC14032002
References

1. Trentini, G. V., "Partially reflecting sheet array," IRE Trans. on Antennas Propagat., Vol. 4, No. 10, 666-671, Oct. 1956.

2. Jackson, D. R. and N. Alexopoulos, "Gain enhancement methods for printed circuits antennas," IEEE Trans. on Antennas Propagat., Vol. 33, No. 9, 976-987, Sep. 1985.
doi:10.1109/TAP.1985.1143709

3. Weily, A. T., S. Bird, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. on Antennas Propagat., Vol. 56, No. 11, 3382-3390, Nov. 2008.
doi:10.1109/TAP.2008.2005538

4. Weily, A., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High-gain 1D EBG resonator antenn," Microw. Opt. Technol. Lett., Vol. 47, No. 2, 107-114, Oct. 2005.
doi:10.1002/mop.21095

5. Al-Tarifi, M. A., D. E. Anagnostou, A. K. Amert, and K. W. Whites, "Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates," IEEE Trans. on Antennas Propagat., Vol. 61, No. 4, 1898-1908, Apr. 2013.
doi:10.1109/TAP.2012.2231931

6. Feresidis, P. and J. C. Vardaxoglou, "A broadband high-gain resonant cavity antenna with single feed," Proc. EuCAP 2006, 1-5, Nice, France, 2006.

7. Boutayeb, H., T. A. Denidni, and M. Nedil, "Bandwidth widening techniques for directive antennas based on partially re°ecting surfaces," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.
doi:10.2528/PIER07060905

8. Moustafa, L. and B. Jecko, "EBG structure with wide defect band for broadband cavity antenna applications," IEEE Antennas Wireless Propagat. Lett., Vol. 7, 693-696, 2008.
doi:10.1109/LAWP.2008.2009076

9. Wang, N.-Z., C. Zhang, Q.-S. Zeng, N.-Q.Wang, and X.-J. Dong, "New dielectric 1D EBG structure for the design of wideband resonator antennas," Progress In Electromagnetics Research, Vol. 141, 233-248, 2013.
doi:10.2528/PIER13061207

10. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. on Antennas Propagat., Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113

11. Ge, Y., K. P. Esselle, and T. S. Bird, "A method to design dual-band, high-directivity EBG resonator antennas using single-resonant, single-layer partially reflective surface," Progress In Electromagnetics Research C, Vol. 13, 245-257, 2010.
doi:10.2528/PIERC10020901

12. Zeb, A., Y. Ge, K. P. Esselle, Z. Sun, and M. E. Tobar, "A simple dual-band electromagnetic band gap resonator antenna based on inverted re°ection phase gradient," IEEE Trans. on Antennas Propagat., Vol. 60, No. 10, 4522-4529, Oct. 2012.
doi:10.1109/TAP.2012.2207331

13. Lee, Y., X. Lu, Y. Hao, S. Yang, J. R. G. Evans, and C. G. Parini, "Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures," IEEE Trans. on Antennas Propagat., Vol. 57, No. 10, 2893-2903, Oct. 2009.

14. Hosseini, S. A., F. Capolino, and F. D. Flaviis, "A 44 GHz single-feed Fabry-Perot cavity antenna designed and fabricated on quartz," IEEE Antennas and Propagation Society (AP-S) International Symposium, 1285-1288, Spokane, Washington, USA, Jul. 3-8, 2011.

15. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Microw. Antennas Propagat., Vol. 148, No. 6, 345-350, 2001.
doi:10.1049/ip-map:20010828

16. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Trans. on Antennas Propagat., Vol. 53, No. 1, 224-235, Jan. 2005.
doi:10.1109/TAP.2004.840521