Vol. 50
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-05-09
Characterization and Design of Millimeter-Wave Full-Band Waveguide-Based Spatial Power Divider/Combiner
By
Progress In Electromagnetics Research C, Vol. 50, 65-74, 2014
Abstract
The design and implementation of millimeter-wave full-band waveguide-based spatial power divider/combiner are presented in this paper. The divider/combiner is based on a compact waveguide-to-microstrip (Wg-Ms) probe-array transition structure, providing full-band frequency coverage and low insertion loss. Efficient design and analysis method for this type of power divider/combiner is developed using spectral domain method combined with the image theory. Ka-band two-way (1×2) and four-way (2×2) power combining structures are analyzed and optimized. The performances of the both optimized power dividers/combiners are evaluated by experiments in back-to-back configurations. The measured overall insertion loss for the 1×2 power divider/combiner is better than 1.4dB over the entire Ka-band, which demonstrates the low-loss performance of the divdier/combiner. The optimized 2×2 power divider/combiner shows a same performance as the 1×2 structure without any degradation in operating bandwidth and insertion loss.
Citation
Kang Yin, Kedi Zhang, and Jinping Xu, "Characterization and Design of Millimeter-Wave Full-Band Waveguide-Based Spatial Power Divider/Combiner," Progress In Electromagnetics Research C, Vol. 50, 65-74, 2014.
doi:10.2528/PIERC14031604
References

1. Chang, K. and C. Sun, "Millimeter-wave power-combining techniques," IEEE Trans. Microwave Theory and Tech., Vol. 31, No. 2, 91-107, Feb. 1983.
doi:10.1109/TMTT.1983.1131443

2. Russell, K. J., "Microwave power combining techniques," IEEE Trans. Microwave Theory and Tech., Vol. 27, No. 5, 472-478, May 1979.
doi:10.1109/TMTT.1979.1129651

3. Xie, X. Q., R. M. Xu, B. Yan, Y. Zhang, and W. G. Lin, "A novel millimeter-wave power combining circuit," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 10, 1453-1464, 2005.
doi:10.1007/s10762-005-8443-2

4. Epp, L. W., D. J. Hoppe, A. R. Khan, and S. L. Stride, "A high-power Ka-band (31{36 GHz) solid-state ampli¯er based on low-loss corporate waveguide combining," IEEE Trans. Microwave Theory and Tech., Vol. 56, No. 8, 1899-1908, Aug. 2008.
doi:10.1109/TMTT.2008.927299

Deli. Delisio, M. P. and R. A. York, "Quasi-optical and spatial power combining," IEEE Trans. Microwave Theory and Tech., Vol. 50, No. 3, 929-936, Mar. 2002.
doi:10.1109/22.989975

6. Kim, M., E. A. Sorvero, J. B. Hacker, M. P. DeLisio, J.-C. Chiao, S.-J. Li, D. Gagnon, J. J. Rosenberg, and D. B. Rutledge, "A 100-element HBT grid amplifier," IEEE Trans. Microwave Theory and Tech., Vol. 41, No. 10, 1762-1770, Oct. 1993.

7. Chang, J., D. H. Schaubert, K. S. Yngvesson, J. Huang, V. Jamnejad, D. Rascoe, and A. L. Riley, "Ka-band power-combining MMIC array," 15th Int. Infrared Millimeter-Waves Conf. Dig., 532-534, Orlando, FL, Dec. 1990.

8. Tsai, H. S., M. J. W. Rodwell, and R. A. York, "Planar amplifier array with improved bandwidth using folded-slots," IEEE Microwave and Guided Wave Letters, Vol. 4, No. 4, 112-114, Apr. 1994.
doi:10.1109/75.282576

9. Cheng, N. S., P. Jia, D. B. Rensh, and R. A. York, "A 120-W X-band spatially combined solid-state amplifier," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 12, 2557-2561, Dec. 1999.
doi:10.1109/22.809006

10. Chen, J. P., L.-Y. Chen, A. Alexanian, and R. A. York, "Broad-band high power amplifier using spatial power-combining technique," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 12, 2469-2475, Dec. 2003.
doi:10.1109/TMTT.2003.819766

11. Jeong, J., Y. Kwon, S. Lee, C. Cheon, and E. A. Sovero, "1.6- and 3.3-W power-amplifier modules at 24 GHz using waveguide-based power combining structures," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 12, 2700-2708, Dec. 2000.
doi:10.1109/22.899033

12. Song, K., Y. Fan, and X. Zhou, "Broadband radial waveguide power amplifier using a spatial power combining technique," IET Microwaves, Antennas and Propagation, Vol. 3, No. 8, 1179-1185, 2009.
doi:10.1049/iet-map.2008.0299

13. Xie, X. Q., C. Zhao, and R. Diao, "A millimeter-wave power combining amplifier based on a waveguide-microstrip E-plane dual-probe four-way power combining network," Int. J. Infrared and Millimeter Waves, Vol. 29, No. 9, 862-870, 2008.
doi:10.1007/s10762-008-9380-7

14. Shih, Y. C., T. N. Ton, and L. Q. Bui, "Waveguide-to-microstrip transitions for millimeter-wave applications," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 1, 473-475, May 1988.

15. Itoh, T., "Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. on Microwave Theory and Tech., Vol. 28, No. 7, 733-736, Jul. 1980.
doi:10.1109/TMTT.1980.1130158

16. Yassin, G. and S. Withington, "Analytical expression for the input impedance of a microstrip probe in waveguide," Int. J. Infrared and Millimeter Waves, Vol. 17, No. 10, 1685-1705, 1996.
doi:10.1007/BF02069582

17. Ho, T. Q. and Y.-C. Shih, "Spectral-domain analysis of E-plane waveguide to microstrip transition," IEEE Trans. Microwave Theory and Tech., Vol. 37, No. 2, 388-392, Feb. 1989.
doi:10.1109/22.20065

18. Pozar, D. M., Microwave Engineering, 2nd Ed., Wiley, New York, 1998.