Vol. 50
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-05-22
A Tunable Electromagnetic Bandgap Structure Using Plasma
By
Progress In Electromagnetics Research C, Vol. 50, 113-120, 2014
Abstract
A tunable electromagnetic-bangap (EBG) structure based on a double layer slotline using plasma is proposed. The plasma permittivity can be tuned by the electron density. The idea of integrating periodical plasma elements inside the slot to tune the stopband is investigated. An electron density and an electron collision frequency equal to 1.75 1013 cm-3 and 1010 s-1 respectively, are the plasma parameters selected in this study. The simulations reveal a shift rate of the second stopband equal to 6%. A new configuration of the structure is also proposed to adapt it better to the experimental requirements. Based on the simulation results, adding the plasma elements to the modified configuration shifts the stopband 4% and reduces its bandwidth by 43% (at -20 dB).
Citation
Asma Kallel, Jérôme Sokoloff, Thierry Callegari, and Olivier Pigaglio, "A Tunable Electromagnetic Bandgap Structure Using Plasma," Progress In Electromagnetics Research C, Vol. 50, 113-120, 2014.
doi:10.2528/PIERC14031302
References

1. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behaviour in the vicinity of the photonic band gap," Physical Review B, Vol. 62, 10696-10705, 2000.
doi:10.1103/PhysRevB.62.10696

2. De Lustrac, A., F. Gadot, E. Akmansoy, and T. Brillat, "High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies," Applied Physics Letters, Vol. 78, 4196-4198, 2001.
doi:10.1063/1.1382853

3. De Lustrac, A., F. Gadot, S. Cabaret, J. M. Lourtioz, A. Priou, E. Akmansoy, and T. Brillat, "Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths," Applied Physics Letters, Vol. 75, 1625-1627, 1999.
doi:10.1063/1.124775

4. Karim, M. F., A. Q. Liu, A. B. Yu, and A. Alphones, "MEMS-based tunable bandstop filter using electromagnetic bandgap (EBG) structures," APMC 2005, Asia-Paci¯c Microwave Conference Proceedings, Vol. 3, 4-7, Dec. 2005.

5. Poilasne, G., P. Pouliguen, K. Mahdjoubi, L. Desclos, and C. Terret, "Active metallic photonic band-gap materials (MPBG): Experimental results on beam shaper," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 1, 117-119, 2000.
doi:10.1109/8.827392

6. John, S. and K. Busch, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Physical Review Letters, Vol. 83, No. 5, 967-970, 1999.
doi:10.1103/PhysRevLett.83.967

7. Yun, T.-Y. and K. Chang, "An electronically tunable photonic bandgap resonator controlled by piezoelectric transducer," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1445-1447, Jun. 2000.

8. Kuylenstierna, D., A. Vorobiev, G. Subramanyam, and S. Gevorgian, "Tunable electromagnetic bandgap structures based on ferroelectric films," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 879-882, 2003.

9. Sakai, O., T. Sakaguchi, and K. Tachibana, "Plasma photonic crystals in two-dimensional arrays f microplasmas," Contrib. Plasma Phys., Vol. 47, 96, 2007.
doi:10.1002/ctpp.200710014

10. Giroud, L., J. Sokoloff, and O. Pigaglio, "Reconfigurable EBG at 18 GHz using perimeter defects," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1029-1037, 2009.

11. Lo, J., J. Sokoloff, T. Callegari, and J. P. Boeuf, "Reconfigurable electromagnetic band gap device sing plasma as a localized tunable defect," Applied Physics Letters, Vol. 96, No. 25, 251501, 2010.
doi:10.1063/1.3454778

12. Varault, S., B. Gabard, J. Sokoloff, and S. Bolioli, "Plasma-based localized defect for switchable coupling applications," Applied Physics Letters, Vol. 98, No. 13, 134103, 2011.
doi:10.1063/1.3559605

13. Varault, S., B. Gabard, T. Crepin, J. Sokoloff, and S. Bolioli, "Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime," J. Appl. Phys., Vol. 115, 084906, 2014.
doi:10.1063/1.4866816

14. Boisbouvier, N., A. Louzir, F. Le Bolzer, A. C. Tarot, and K. Mahdjoubi, "A double layer EBG structure for slot-line printed devices," IEEE Antenna and Propagation Society International Symposium, Vol. 4, 3553-3556, 2004.

15., Ansoft Corporation, Online Available: http://www.ansoft.com.

16. Quendo, C., E. Rius, C. Person, and M. Ney, "Integration of optimized low-pass filters in a bandpass filter for out-of-band improvement," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2376-2383, 2001.
doi:10.1109/22.971624

17. Tu, W.-H. and K. Chang, "Wide-band microstrip-to-coplanar stripline/slotline transitions," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 3, 1084-1089, 2006.
doi:10.1109/TMTT.2005.864127