Vol. 48
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-03-24
Prediction Model of Shielding Effectiveness of Electromagnetic Shielding Fabric with Rectangular Hole
By
Progress In Electromagnetics Research C, Vol. 48, 151-157, 2014
Abstract
Electromagnetic shielding (EMS) fabrics often need to design rectangular holes for application. However, there is not a mature approach to predict the shielding effectiveness (SE) of the EMS fabric with rectangular hole. This paper proposes that there are a number of loose regions of conductive fibers on the hole edge of the EMS fabric, and establishes a SE prediction model of the EMS fabric with rectangular hole. Firstly, the loose region of conductive fiber is analyzed to build a model of the rectangular hole. Secondly, the SE prediction model of the EMS fabric with rectangular hole is deduced according to the transmission coefficient of the normal region, hole region and loose region, and the determining method of the loose region is given. Finally, the prediction model is verified by experiments. The results show that the model can successfully predict the SE of the EMS fabric with the plain, twill and satin weaves, and the factors such as frequency, fabric density and metal fiber content have little influence on the model. The proposed model can provide a valuable reference for the rational design of the rectangular hole of the EMS fabric.
Citation
Zhe Liu, Yalan Yang, Xiuchen Wang, and Zhong Zhou, "Prediction Model of Shielding Effectiveness of Electromagnetic Shielding Fabric with Rectangular Hole," Progress In Electromagnetics Research C, Vol. 48, 151-157, 2014.
doi:10.2528/PIERC14022103
References

1. Wang, J. and Z. Xi, "Research progress of electromagnetic shielding material of metal fiber," Rare Metal Materials and Engineering, Vol. 40, 1688-1692, 2011.

2. Ortlek, H. G., O. G. Saracoglu, O. Saritas, and S. Bilgin, "Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire," Fibers and Polymers, Vol. 13, 63-67, 2012.
doi:10.1007/s12221-012-0063-6

3. Liu, Z. and X. C. Wang, "Influence of fabric weave type on the effectiveness of electromagnetic shielding woven fabric," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1848-1856, 2012.
doi:10.1080/09205071.2012.717352

4. Rajendrakumar, K. and G. Thilagavathi, "Electromagnetic shielding effectiveness of copper/PET composite yarn fabrics," Indian Journal of Fibre & Textile Research,, Vol. 37, 133-137, 2012.

5. Wang, X. C. and Z. Liu, "Influence of fabric density on shielding effectiveness of electromagnetic shielding fabric," Przeglad Elektrotechniczny, Vol. 88, No. 11a, 236-238, 2012.

6. Liu, Z. and X. C. Wang, "Relation between shielding effectiveness and tightness of electromagnetic shielding fabric," Jounal of Industrial Textiles, Vol. 43, No. 2, 302-316, 2013.
doi:10.1177/1528083713477440

7. Mendez, H. A., "Shielding theory of enclosed with apertures," IEEE Trans. on Electromagnetic Compatibility, Vol. 20, No. 2, 296-305, 1978.
doi:10.1109/TEMC.1978.303722

8. Robinson, M. P. and T. M. Benson, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Trans. on Electromagnetic Compatibility, Vol. 40, No. 8, 240-248, 1998.
doi:10.1109/15.709422

9. Chen, J. and A. Zhang, "A subgridding scheme based on the FDTD method and HIE-FDTD method," Applied Computational Electromagnetics Society Journal, Vol. 26, No. 1, 1-7, 2011.

10. Rodolfo, A. and G. Lovat, "Analysis of the shielding effectiveness of metallic enclosures excited by internal sources through an efficient method of moment approach," Applied Computational Electromagnetics Society Journal, Vol. 25, No. 7, 600-611, 2010.

11. Kraft, C. H., "Modeling leakage through finite apertures with TLM," IEEE International ymposium on Electromagnetic Compatibility, 73-76, Chicago, CA, Aug. 1994.

12. Qian, Z. and Z. J. Chen, Electromagnetic Compatibility Design and Interference Suppression Technology, Zhejiang University Press, Hangzhou, 2000.

13. Liu, Z., X. C. Wang, and Z. Zhou, "Automatic recognition of metal fiber per unit area for electromagnetic shielding fabric based on computer image analysis," Progress In Electromagnetics Research Letters, Vol. 37, 101-111, 2013.

14. Wang, X. C. and X. J. Li, "Recognition of fabric density with quadratic local extremum," International Journal of Clothing Science and Technology, Vol. 24, No. 5, 328-338, 2012.
doi:10.1108/09556221211258993

15. Wang, X. C., Z. Liu, and Z. Zhou, "Virtual metal model for fast computation of shielding effectiveness of blended electromagnetic interference shielding fabric," International Journal of Applied Electromagnetics and Mechanics, Vol. 44, No. 1, 87-97, 2014.

16. Wang, X. C. and Z. Liu, "A new computation of shielding effectiveness of electromagnetic radiation shielding fabric," Progress In Electromagnetics Research Letters, Vol. 33, 177-186, 2012.
doi:10.2528/PIERL12071209