Vol. 52
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-08-08
Proposing a Criss-Cross Metamaterial Structure for Improvement of Performance Parameters of Microstrip Antennas
By
Progress In Electromagnetics Research C, Vol. 52, 145-152, 2014
Abstract
In this paper, we present the design of a metamaterial based microstrip patch antenna, optimized for bandwidth and multiple frequency operations. A Criss-Cross structure has been proposed. This shape is inspired by the famous Jerusalem Cross. The theory and design formulas to calculate various parameters of the proposed antenna have been presented. The software analysis of the proposed unit cell structure has been validated experimentally thus giving negative response of ε and μ. Following this, a metamaterial-based-microstrip-patch-antenna is designed. A detailed comparative study is conducted exploring the response of the designed patch made of metamaterial and that of the conventional patch. Finally, antenna parameters such as gain, bandwidth, radiation pattern and multiple frequency responses are investigated and optimised and presented in tables and response-graphs. It is also observed that the physical dimension of the metamaterial based patch antenna is smaller than its conventional counterpart operating at the same fundamental frequency. The response of the patch antenna has also been verified experimentally. The challenging part was to develop metamaterial based on some signature structures and techniques that would offer advantage in terms of bandwidth and multiple frequency operation, which is demonstrated in this paper. The unique shape proposed in this paper gives improvement in bandwidth without reducing the gain of the antenna.
Citation
Kirti Inamdar, Yogesh Pasad Kosta, and Suprava Patnaik, "Proposing a Criss-Cross Metamaterial Structure for Improvement of Performance Parameters of Microstrip Antennas," Progress In Electromagnetics Research C, Vol. 52, 145-152, 2014.
doi:10.2528/PIERC14022003
References

1. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas and Propagation, Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433

2. Robert, B., T. Razban, and A. Papiernik, "Compact amplifier integration in square patch antenna," Electronics Letters, Vol. 28, No. 19, 1808-1810, Sep. 1992.
doi:10.1049/el:19921153

3. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas and Propagation, Vol. 38, No. 8, 1298-1302, Aug. 1990.
doi:10.1109/8.56971

4. Huynh, T. and K. F. Lee, "Single layer single patch wideband microstrip patch antenna," Electronics Letters, Vol. 31, No. 16, 1310-1311, Aug. 1995.
doi:10.1049/el:19950950

5. Gupta, V., S. Sinha, S. K. Koul, and B. Bhat, "Wideband dielectric resonator-loaded suspended microstrip patch antennas," Microwave and Optical Technology Letters, Vol. 37, 300-302, May 2003.
doi:10.1002/mop.10900

6. Yang, F., X. X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide band E shaped patch antenna for wireless communications," IEEE Trans. Antennas and Propagation, Vol. 49, 1094-1100, 2001.
doi:10.1109/8.933489

7. Majid, H. A., M. K. A. Rahim, and T. Masri, "Microstrip antennas gain enhancement using LHM structures," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

8. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factor," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 135-146, 2006.
doi:10.1109/TMTT.2005.860329

9. Alici, K. B. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, 083104, 2007.
doi:10.1063/1.2722232

10. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol., Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

11. Burokur, S. N., M. Latrach, and S. Toutain, "Theoritical investigation of a circular patch antenna in the presence of a left-handed metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 183-186, 2005.
doi:10.1109/LAWP.2005.850797

12. Inamdar, K., Y. P. Kosta, and S. Patnaik, "A Criss-Cross metamaterial based electrically small antenna," IJERA, Vol. 3, No. 3, 4-7, May-Jun. 2013.

13. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

14. Wang, J., S. Qu, Hua Ma, S. Xia, Y. Yang, L. Lu, X. Wu, Z. Xu, and Q. Wang, "Experimental verification of anisotropic three dimensional left-handed metamaterial composed of Jerusalem Crosses," PIERS Online, Vol. 6, No. 1, 31-35, 2010.
doi:10.2529/PIERS090825095520

15. Katko, A. R., Artificial negative permeability based on a fractal Jerusalem Cross, Undergraduate Honors Thesis, Department of Electrical & Computer Engineering Honors, The Ohio State University, 2009.

16. Inamdar, K., Y. P. Kosta, and S. Patnaik, "A Criss-Cross shaped left-handed metamaterial," EJSR, Vol. 104, No. 2, 261-269, Jun. 2013.

17. Smith, D. R., et al., "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617