Vol. 48
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-03-10
Mutual Coupling Reduction of a Dual-Frequency Microstrip Antenna Array by Using U-Shaped DGS and Inverted U-Shaped Microstrip Resonator
By
Progress In Electromagnetics Research C, Vol. 48, 61-68, 2014
Abstract
A compact U-shaped defective ground structure (DGS) and an inverted U-shaped resonator are introduced in order to reduce the mutual coupling (MC) between two slotted microstrip antennas at two different resonance frequencies. The proposed DGS and resonator have the same electrical length and both are placed in between two patch antennas, as a technique to suppress the occurrence of MC at two different frequency bands. The DGS and the resonator offer stop bands at 2.45 GHz and 4.5 GHz respectively. Simulated results show a reduction in MC of 20 dB at 2.45 GHz band and 10 dB at 4.5 GHz band. We have developed experimental models that have proved this concept of MC reduction. Finally, the influence of other parameters of the proposed antenna at the presence of the combination of DGS and resonator in the array system has been studied. Prototype antennas for different combinations of DGS and resonator and two-element array integrated with DGS and resonator have been fabricated, measured and the idea has been verified. A good agreement is observed between measured and the simulated results.
Citation
Chandan Kumar Ghosh, Bappaditya Mandal, and Susanta Kumar Parui, "Mutual Coupling Reduction of a Dual-Frequency Microstrip Antenna Array by Using U-Shaped DGS and Inverted U-Shaped Microstrip Resonator," Progress In Electromagnetics Research C, Vol. 48, 61-68, 2014.
doi:10.2528/PIERC14020603
References

1. Pozar, D. M. and D. H. Schaubert, "Scan blindness in infinite phased arrays of printed dipoles," IEEE Trans. Antennas Propag., Vol. 32, No. 6, 602-610, 1984.
doi:10.1109/TAP.1984.1143375

2. Ouyang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas Wireless Propag. Lett., Vol. 10, 310-312, 2011.
doi:10.1109/LAWP.2011.2140310

3. Sato, H., Y. Koyanagi, K. Ogawa, and M. Takahashi, "A method of dual-frequency decoupling for two-element MIMO antenna," PIERS Proceedings, 1853-1857, Stockholm, Sweden, Aug. 12-15, 2013.

4. Chen, S. C., Y. S. Wang, and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469

5. Sato, H., Y. Koyanagi, K. Ogawa, and M. Takahashi, "A method of dual-frequency decoupling for closely spaced two small antennas," IEICE Trans. B., Vol. J94-B-II, No. 9, 1104-1113, Sep. 2011 (in Japanese).

6. Zhu, F. G., J. D. Xu, and Q. Xu, "Reduction of mutual coupling between closely-packed antenna elements using defected ground structure," Electron. Lett., Vol. 45, No. 12, 601-602, 2009.
doi:10.1049/el.2009.0985

7. Mandal, M. K. and S. Sanyal, "A novel defected ground structure for planar circuits," IEEE Microw. Wirel. Compon. Lett., Vol. 16, No. 2, 93-95, 2006.
doi:10.1109/LMWC.2005.863192

8. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

9. Yang, F. and Y. R. Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

10. Zhang, L., J. A. Castaneda, and N. G. Alexopoulos, "Scan blindness free phased array design using PBG materials," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2000-2007, 2004.
doi:10.1109/TAP.2004.832516

11. Iluz, Z., R. Shavit, and R. Bauer, "Microstrip antenna phased array with electromagnetic band gap substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1446-1453, 2004.
doi:10.1109/TAP.2004.830252

12. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

13. Fu, Y. and N. Yuan, "Elimination of scan blindness in phased array of microstrip patches using electromagnetic band gap materials," IEEE Antennas Wireless Propag. Lett., Vol. 3, No. 1, 63-65, 2004.
doi:10.1109/LAWP.2004.827891

14. Yu, A. and X. Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 170-172, 2003.
doi:10.1109/LAWP.2003.814773

15. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, Jul. 2008.
doi:10.1109/TAP.2008.923306

16. Nikolic, M., A. Djordjevic, and A. Nehorai, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3469-3474, Nov. 2005.
doi:10.1109/TAP.2005.858847

17. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 10, 862-865, Aug. 22, 2011.

18. Farsi, S., H. Aliakbarian, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antenna by using a simple microstrip U-section," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1501-1503, Dec. 9, 2012.

19. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett.,, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

20. Ghosh, C. K. and S. K. Parui, "Reduction of mutual coupling between E-shaped microstrip antenna array by using a simple microstrip I-section," Microwave and Optical Technology Letter, Vol. 55, No. 11, 2544-2549, Nov. 2013.
doi:10.1002/mop.27928

21. Sainati, R. A., CAD of Micro Strip Antenna for Wireless Applications, Artech House Inc., 1996.