Vol. 49
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-04-14
Analysis and Design of Millimeter-Wave Circularly Polarized Substrate Integrated Travelling-Wave Antennas
By
Progress In Electromagnetics Research C, Vol. 49, 67-77, 2014
Abstract
Circularly polarized millimeter-wave travelling-wave antennas, using substrate integrated circuits (SICs) technology, are designed, fabricated and tested. By using the SICs technology, compact antennas with low losses in the feeding structure and with good design accuracy are obtained. The elementary antenna which is composed of two inclined slots is characterized by full-wave simulations. This characterization is used for the design and development of linear antenna arrays with above 16 dB gain and low side lobe level (<-25 dB), using di®erent power aperture distributions, namely uniform, Tchebychev and Taylor. Experimental results are presented at 77 GHz showing that the proposed antennas present good performances in terms of impedance matching, gain and axial ratio. These antennas have potential applications in integrated transceivers for communication and radar systems at millimeter-wave frequencies.
Citation
Halim Boutayeb, and Ke Wu, "Analysis and Design of Millimeter-Wave Circularly Polarized Substrate Integrated Travelling-Wave Antennas," Progress In Electromagnetics Research C, Vol. 49, 67-77, 2014.
doi:10.2528/PIERC14013008
References

1. Yang, J., G. Pyo, C.-Y. Y. Kim, and S. Hong, "A 24-GHz CMOS UWB radar transmitter with compressed pulses," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 4, 1117-1125, 2012.
doi:10.1109/TMTT.2012.2184136

2. Lee, S., S. Kong, C.-Y.. Kim, and S. Hong, "A low-power K-band CMOS UWB radar transceiver IC for short range detection," Proc. IEEE Radio Frequ. Integra. Circuits Symp., 503-506, Daejeon, South Korea, 2012.

3. Hasch, J., E. E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 4, 845-860, 2012.
doi:10.1109/TMTT.2011.2178427

4. Fisher, A., A. Stelzer, and L. Maurer, "A 77-GHz antenna and fully integrated radar transceiver in package," IEEE International Journal of Microwave and Wireless Technologies, Vol. 4, 447-453, 2012.
doi:10.1017/S1759078712000049

5. Perahia, E., C. Cordeiro, M. Park, and L. L. Yang, "IEEE 802.11ad: Defning the next generation multi-Gbps wi-fi (CCNC)," Proceedings IEEE Consumer Communications and Networking Conference, 1-5, Hillsboro, USA, 2010.

6. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

7. El Mostrah, A., B. Potelon, E. Rius, C. Quendi, J. Favennec, and H. Leblond, "Comparative study of two C-band SIW filter topologies for a space application," Proc. European Microwave Conference (EuMC), 368-371, Brest, France, 2012.

8. Lian, W. and W. Hong, "Substrate integrated coaxial line 3 dB coupler," Electronics Letters, Vol. 48, No. 1, 35-36, 2012.
doi:10.1049/el.2011.2708

9. Djerafi, T., J. Gauthier, and K. Wu, "Variable coupler for Butler beam-forming matrix with low sidelobe level," IET Microwaves, Antennas & Propagation, Vol. 6, No. 9, 1034-1039, 2012.
doi:10.1049/iet-map.2011.0297

10. Djera, T., M. Daigle, H. Boutayeb, X. P. Zhang, and K. Wu, "Substrate integrated waveguide six-port broadband front-end circuit for millimeter-wave radio and radar systems," Proc. European Microwave Conference (EuMC), 77-80, Roma, Italy, 2009.

11. Liu, J. H., D. R. Jackson, and Y.-L. L. Lon, "Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 20-29, 2012.
doi:10.1109/TAP.2011.2167910

12. Chen, J.-X. X., W. Hong, Z. Hao, P. Yan, X. Zhu, J.-Y. Y. Zhou, C. Peng, and K. Wu, "Development of a single board microwave sub-system based on substrate integrated waveguide (SIW) technology," Proc. IEEE Microwave Symposium Digest (MTT),, 1-3, Montreal, Canada, 2012.

13. Li, Z. and K. Wu, "24-GHz frequency-modulation continuous-wave radar front-end system-on-substrate," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 278-285, 2008.
doi:10.1109/TMTT.2007.914363

14. Han, L. and K. Wu, "24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 3, 619-631, 2012.
doi:10.1109/TMTT.2011.2179552

15. Nematollahi, H., H. Boutayeb, and K. Wu, "Mm-wave circularly polarized SIW traveling-wave antennas," Proc. European Microwave Conference (EuMC), Roma, Italy, 2009.

16. Zhang, Q. F. and Y. L. Lu, "45o linearly polarized substrate integrated waveguide-fed slot array antennas," Proc. IEEE Microwave and Millimeter Wave Technology (ICMMT), Vol. 3, 1214-1217, Nanjing, China, 2008.

17. Peters, F. D., S. O. Tatu, and T. Denidni, "Design of beamforming slot antenna arrays using substrate integrated waveguide," Proc. IEEE Antennas and Propag. Society Intern Symp. (APSURSI), 1-2, Spokane, USA, 2011.

18. Chen, P., W. Hong, Z. Kuai, and J. Xu, "A substrate integrated waveguide circular polarized slot radiator and its linear array," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1225-1536, 2009.

19. Montisci, G., "Design of circularly polarized waveguide slot linear arrays," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 3025-3029, Oct. 2006.
doi:10.1109/TAP.2006.882201

20. Montisci, G., M. Musa, and G. Mazzarella, "Waveguide slot antennas form circularly polarized radiated field," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 619-623, Feb. 2004.
doi:10.1109/TAP.2004.823873