Vol. 48
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-02-26
A Tradeoff Design of Broadband Power Amplifier in Doherty Configuration Utilizing a Novel Coupled-Line Coupler
By
Progress In Electromagnetics Research C, Vol. 48, 11-19, 2014
Abstract
A broadband power amplifier designed and implemented in Doherty configuration is illustrated in this paper. Both input and output networks adopt the broadband matching topology. Additionally a compensation network, consisting of a series transmission line shunted with a capacitance, is set behind the peak amplifier to avoid in-band power leakage in the low-power section while at the cost of peak output power in partial band. A novel coupler is designed as an uneven power-divided splitter and experimentally validated for a broadband power amplifier module. A tradeoff of bandwidth, efficiency and output power is fulfilled through parameters select and postproduction tuning. According to the measured results, the proposed broadband Doherty power amplifier achieves an average saturated output power of 42 dBm, an average gain of 10.6 dB, an average peak and 6 dB back-off efficiency of 48.4% and 32.8%, respectively, and a fractional bandwidth of 51.4%, from 1.3 GHz to 2.2 GHz. The adjacent channel power ratio is better than -40 dBc when the amplifier is driven with 10-MHz QPSK signal, thus exhibiting a high linearity performance.
Citation
Duye Ye, Yongle Wu, and Yuan'an Liu, "A Tradeoff Design of Broadband Power Amplifier in Doherty Configuration Utilizing a Novel Coupled-Line Coupler," Progress In Electromagnetics Research C, Vol. 48, 11-19, 2014.
doi:10.2528/PIERC14011702
References

1. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of Radio Engineers, Vol. 24, No. 9, 1163-1182, Sep. 1936.

2. Jung, S., O. Hammi, and F. M. Ghannouchi, "Design optimization and DPD linearization of GaN-based unsymmetrical Doherty power amplifier for 3G multicarrier applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2105-2113, Sep. 2009.
doi:10.1109/TMTT.2009.2027076

3. Kam, S., O. Kwon, and Y. Jeong, "A wideband amplifier employing an envelope tracking technique," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 6, 312-314, Jun. 2013.
doi:10.1109/LMWC.2013.2257999

4. Chen, S. and Q. Xue, "Optimized load modulation network for Doherty power amplifier performance enhancement," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 11, 3474-3481, Nov. 2012.
doi:10.1109/TMTT.2012.2215625

5. Colantonio, P., F. Giannini, R. Giofrµe, and L. Piazzon, "Theory and experimental results of a class F AB-C Doherty power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 1936-1947, Aug. 2009.
doi:10.1109/TMTT.2009.2025433

6. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Double the band and optimize," IEEE Microwave Magazine, Vol. 13, No. 2, 69-82, 2012.
doi:10.1109/MMM.2011.2181449

7. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
doi:10.1109/TIE.2011.2176695

8. Saad, P., P. Colantonio, L. Piazzon, F. Giannini, K. Andersson, and C. Fager, "Design of a concurrent dual-band 1.8-2.4-GHz GaN-HEMT Doherty power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1840-1849, Jun. 2012.
doi:10.1109/TMTT.2012.2189120

9. Bathich, K., A. Z. Markos, and G. Boeck, "A wideband GaN Doherty amplifier with 35% fractional bandwidth," Proceedings of the 40th European Microwave Conference, 1006-1009, Sep. 2010.

10. Wu, D. Y. and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3201-3213, Oct. 2012.
doi:10.1109/TMTT.2012.2209446

11. Gustafsson, D., J. C. Cahuanam, D. Kuylenstierna, I. Angelov, N. Rorsman, and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 922-930, Feb. 2013.
doi:10.1109/TMTT.2012.2231421

12. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Jun. 2012.
doi:10.1109/TMTT.2012.2201745

13. Darraji, R., F. M. Ghannouchi, and M. Helaoui, "Mitigation of bandwidth limitation in wireless Doherty amplifiers with substantial bandwidth enhancement using digital techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 2875-2885, Sep. 2012.
doi:10.1109/TMTT.2012.2207910

14. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "A Doherty architecture with high feasibility and defined bandwidth behavior," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 9, 3308-3317, Sep. 2013.
doi:10.1109/TMTT.2013.2274432

15. Piazzon, L., R. Giofre, P. Colantonio, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 626-628, Nov. 2013.
doi:10.1109/LMWC.2013.2281413

16. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, Jan. 2012.
doi:10.1109/TMTT.2011.2175237

17. Shao, J., R. Zhou, H. Ren, B. Arigong, M. Zhou, H. S. Kim, and H. Zhang, "Design of GaN Doherty power amplifiers for broadband applications," IEEE Microwave and Wireless Components Letters, Vol. PP, No. 99, 1, 2014.
doi:10.1109/LMWC.2013.2293659

18. Wu, Y., W. Sun, S. Leung, Y. Diao, K. Chan, and Y. Siu, "Single-layer microstrip high-directivity coupled-line coupler with tight coupling," IEEE Transactions on Microwave Theory and Technique, Vol. 61, No. 2, 746-753, Feb. 2013.
doi:10.1109/TMTT.2012.2235855

19. Horiguchi, K., S. Ishizaka, T. Okano, M. Nakayama, H. Ryoji, Y. Isota, and T. Takagi, "Efficiency enhancement of 250W Doherty power ampli¯ers using virtual open stub techniques for UHF-band OFDM applications," IEEE MTT-S International Microwave Symposium Digest, 1356-1359, 2006.

20. Markos, A. Z., "A 6W uneven Doherty power amplifier in GaN technology," European Conference on Wireless Technologies, 379-382, 2007.

21. Gajadharsing, J. R., "Analysis and design of a 200W LDMOS based Doherty amplifier for 3G base stations," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 529-532, 2004.