1. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of Radio Engineers, Vol. 24, No. 9, 1163-1182, Sep. 1936.
2. Jung, S., O. Hammi, and F. M. Ghannouchi, "Design optimization and DPD linearization of GaN-based unsymmetrical Doherty power amplifier for 3G multicarrier applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2105-2113, Sep. 2009.
doi:10.1109/TMTT.2009.2027076
3. Kam, S., O. Kwon, and Y. Jeong, "A wideband amplifier employing an envelope tracking technique," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 6, 312-314, Jun. 2013.
doi:10.1109/LMWC.2013.2257999
4. Chen, S. and Q. Xue, "Optimized load modulation network for Doherty power amplifier performance enhancement," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 11, 3474-3481, Nov. 2012.
doi:10.1109/TMTT.2012.2215625
5. Colantonio, P., F. Giannini, R. Giofrµe, and L. Piazzon, "Theory and experimental results of a class F AB-C Doherty power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 1936-1947, Aug. 2009.
doi:10.1109/TMTT.2009.2025433
6. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Double the band and optimize," IEEE Microwave Magazine, Vol. 13, No. 2, 69-82, 2012.
doi:10.1109/MMM.2011.2181449
7. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
doi:10.1109/TIE.2011.2176695
8. Saad, P., P. Colantonio, L. Piazzon, F. Giannini, K. Andersson, and C. Fager, "Design of a concurrent dual-band 1.8-2.4-GHz GaN-HEMT Doherty power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1840-1849, Jun. 2012.
doi:10.1109/TMTT.2012.2189120
9. Bathich, K., A. Z. Markos, and G. Boeck, "A wideband GaN Doherty amplifier with 35% fractional bandwidth," Proceedings of the 40th European Microwave Conference, 1006-1009, Sep. 2010.
10. Wu, D. Y. and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3201-3213, Oct. 2012.
doi:10.1109/TMTT.2012.2209446
11. Gustafsson, D., J. C. Cahuanam, D. Kuylenstierna, I. Angelov, N. Rorsman, and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 922-930, Feb. 2013.
doi:10.1109/TMTT.2012.2231421
12. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Jun. 2012.
doi:10.1109/TMTT.2012.2201745
13. Darraji, R., F. M. Ghannouchi, and M. Helaoui, "Mitigation of bandwidth limitation in wireless Doherty amplifiers with substantial bandwidth enhancement using digital techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 2875-2885, Sep. 2012.
doi:10.1109/TMTT.2012.2207910
14. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "A Doherty architecture with high feasibility and defined bandwidth behavior," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 9, 3308-3317, Sep. 2013.
doi:10.1109/TMTT.2013.2274432
15. Piazzon, L., R. Giofre, P. Colantonio, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 626-628, Nov. 2013.
doi:10.1109/LMWC.2013.2281413
16. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, Jan. 2012.
doi:10.1109/TMTT.2011.2175237
17. Shao, J., R. Zhou, H. Ren, B. Arigong, M. Zhou, H. S. Kim, and H. Zhang, "Design of GaN Doherty power amplifiers for broadband applications," IEEE Microwave and Wireless Components Letters, Vol. PP, No. 99, 1, 2014.
doi:10.1109/LMWC.2013.2293659
18. Wu, Y., W. Sun, S. Leung, Y. Diao, K. Chan, and Y. Siu, "Single-layer microstrip high-directivity coupled-line coupler with tight coupling," IEEE Transactions on Microwave Theory and Technique, Vol. 61, No. 2, 746-753, Feb. 2013.
doi:10.1109/TMTT.2012.2235855
19. Horiguchi, K., S. Ishizaka, T. Okano, M. Nakayama, H. Ryoji, Y. Isota, and T. Takagi, "Efficiency enhancement of 250W Doherty power ampli¯ers using virtual open stub techniques for UHF-band OFDM applications," IEEE MTT-S International Microwave Symposium Digest, 1356-1359, 2006.
20. Markos, A. Z., "A 6W uneven Doherty power amplifier in GaN technology," European Conference on Wireless Technologies, 379-382, 2007.
21. Gajadharsing, J. R., "Analysis and design of a 200W LDMOS based Doherty amplifier for 3G base stations," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 529-532, 2004.