Vol. 48
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-03-21
Design of h -Plane Inductance Diaphragm Waveguide Band-Pass Filter for Millimeter Imaging Frontend
By
Progress In Electromagnetics Research C, Vol. 48, 141-150, 2014
Abstract
This study presents an equivalent circuit and a design of an H-plane waveguide bandpass filter (BPF) with chamfer. Traditionally, only thin inductive diaphragm with no chamfers considered in the direct-coupled cavity theory, but this will lead to difficulties in the BPF manufacturing. During manufacturing process the chamfer cannot be avoided, and its equivalent circuit and effects on frequency shifting are investigated in this paper. A new design method is proposed in order to compensate the effect of chamfer in the half-wavelength resonator connection between the inductance diaphragm and the waveguide. A modified empirical formula and corresponding procedure are provided for designing such filters. The working center frequency and 3 dB bandwidths (BW) are simulated considering different chamfer radius. The simulated center frequencies are 18 GHz, 26 GHz, 34 GHz and 42 GHz, and BWs are 2.265%, 2.5%, 10%, 15% and 20%. Results show that the modified formula, which conforms better with the simulated results, is superior to the traditional formula. Two H-plane waveguide BPFs are manufactured with center frequency 26 GHz with 2.5% BW and 34 GHz with 2.265% BW. The results of the modified formula are in good agreement with measured ones.
Citation
Baohua Yang, Zhi-Ping Li, Jin Zhang, Xianxun Yao, Cheng Zheng, Xiaozhou Shang, and Jungang Miao, "Design of h -Plane Inductance Diaphragm Waveguide Band-Pass Filter for Millimeter Imaging Frontend," Progress In Electromagnetics Research C, Vol. 48, 141-150, 2014.
doi:10.2528/PIERC14011403
References

1. Sinclair, G. N., R. N. Anderton, and R. Appleby, "Outdoor passive millimeter wave security screening," 2001 IEEE 35th International Carnahan on Security Technology, 172-179, 2001.
doi:10.1109/.2001.962830

2. Wang, N.-N., J.-H. Qiu, and W.-B. Deng, "Development status of millimeter wave imaging systems for concealed detection," Infrared Technology, Vol. 31, No. 3, 129-135, China, 2009.

3. Nanzer, J. A. and R. L. Rogers, "Human presence detection using millimetre-wave radiometry," IEEE Trans. Microw. Theory & Tech., Vol. 55, No. 12, 2727-2733, 2007.
doi:10.1109/TMTT.2007.909872

4. Xue, Y., J. Miao, G. Wan, A. Hu, and F. Zhao, "Prototype development of an 8mm band 2-dimensional aperture synthesis radiometer," 2008 International Geoscience and Remote Sensing Symposium, Boston, 2008.

5. Zheng, C., X. Yao, A. Hu, and J. Miao, "A passive millimeter-wave imager used for concealed weapon detection," Progress In Electromagnetics Research B, Vol. 46, 279-297, 2013.

6. Zheng, C., X. Yao, A. Hu, and J. Miao, "Statistical power measurement unit for an 8 mm-band two dimensional synthetic aperture interferometric radiometer BHU-2D," Progress In Electromagnetics Research M, Vol. 27, 119-128, 2012.
doi:10.2528/PIERM12101506

7. Yang, B.-H., Z.-P. Li, T.-F. Yu, et al. "Design of receiver used for passive millimeter waveimaging system," TELKOMNIKA, Vol. 12, No. 1, 98-105, 2014.

8. Li, L., K. Wu, and P. Russer, "On the thru-reflect-line (TRL) numerical calibration and error analysis for parameter extraction of circuit model," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 16, No. 5, 470-482, 2006.
doi:10.1002/mmce.20167

9. Zhang, J., Z. Li, C. Zheng, X. Yao, B. Yang, and J. Miao, "Local oscillator uncorrelated phase noiseanalysis for millimeter-wave passive imager BHU-2D frequency synthesizer," Progress In Electromagnetics Research B, Vol. 54, 89-106, 2013.

10. Usher, J. and W. J. R. Hoefer, "Tunable microwave and millimeter-wave band-pass filter," IEEE Trans. Microwave Theory and Techniques, Vol. 39, 643-653, Apr. 1991.

11. Zhao, M., Y. Fan, and . Zhang, "A W-band low loss E-plane type waveguide band-pass filter," IEEE 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 355-357, 2007.
doi:10.1109/MAPE.2007.4393621

12. Zhao, M. and Y. Fan, "A Ka band low loss wideband E-plane waveguide filter," Proceedings of 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, MAPE 2011, 802-804, 2011.
doi:10.1109/MAPE.2011.6156221

13. Lorente, J. A, C. Ernst, and A. A. Melcon, "Rigorous derivation of lossy equivalent circuit for narrowband waveguide direct-coupled-cavity filters," IET Microw. Antennas Propag., Vol. 7, No. 4, 251-258, 2013.
doi:10.1049/iet-map.2012.0283

14. Bahl, I. and P. Bhartia, Microwave Solid State Circuit Design, John Wiley & Sons Inc., 2003.

15. Levy, R., "Theory of direct-coupled-cavity filters," IEE Transactions on Microwave Theory and Techniques, Vol. 15, No. 6, 340-347, 1967.
doi:10.1109/TMTT.1967.1126471

16. Yang, B.-H., G. Mehdi, A. Hu, et al. "The round-ended design and measurement of all symmetric edge-coupledbandpass filter," Progress In Electromagnetics Research C, Vol. 136, 17-27, 2013.