1. Ren, K., C. Y. Wu, and L. C. Zhang, "The restriction on delta-I noise along the power/ground layer in the high speed digital printed circuit board," Proc. IEEE Int. Electromagn. Compat. Symp., 511-516, Aug. 1998.
2. Kamgaing, , T. and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw., Wireless Component Lett., Vol. 13, No. 1, 21-23, 2003.
doi:10.1109/LMWC.2002.807713
3. Wu, T. L., S. T. Chen, J. N. Hwang, and Y. H. Lin, "Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB," IEEE Trans. on Electromagn. Compat., Vol. 46, No. 1, 33-45, 2004.
doi:10.1109/TEMC.2004.823680
4. Swaminathan, M., "Power distribution networks for system-on-package: Status and challenges," IEEE Trans. on Advanced Packaging, Vol. 27, No. 2, 286-230, 2004.
doi:10.1109/TADVP.2004.831897
5. Lei, G. T., R. W. Techentin, and B. K. Gilbert, "High frequency characterization of power/ground-plane structures ," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 5, 562-569, 1999.
doi:10.1109/22.763156
6. Ramahi, O., V. Subramanian, and B. Archambeault, "A simple finite difference frequency-domain (FDFD) algorithm for analysis of switching noise in printed circuit boards and packages," IEEE Trans. on Advanced Packaging, Vol. 26, No. 2, 191-198, 2003.
doi:10.1109/TADVP.2003.817477
7. Archambeault, B., "Analyzing power/ground plane decoupling performance using the partial element equivalent circuit (PEEC) simulation technique," IEEE Int. Electromagn. Compat. Symp., 779-784, Aug. 2000.
8. Archambeault, B. and A. E. Ruehli, "Analysis of power/ground plane EMI decoupling performance using the partial-element equivalent circuit technique," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 4, 437-445, 2001.
doi:10.1109/15.974623
9. Madou, A. and L. Martens, "Electrical behavior of decoupling capacitors embedded in multilayered PCBs," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 4, 549-556, 2001.
doi:10.1109/15.974634
10. Xu, M., T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, "Power-bus decoupling with embedded capacitance in printed circuit board design," IEEE Trans. on Electromagn. Compat., Vol. 45, No. 1, 22-30, 2003.
doi:10.1109/TEMC.2002.808075
11. Shahparnia, S. and O. Ramahi, "Miniaturised electromagnetic bandgap structures for broadband switching noise suppression in PCBs," Electron. Lett., Vol. 41, No. 9, 519-520, 2005.
doi:10.1049/el:20050445
12. Kwon, J. H. and J. G. Yook, "Partial placement of EBG on both power and ground planes for broadband suppression of simultaneous switching noise ," IEICE Trans. on Commun., Vol. E92-B, No. 7, 2550-2553, 2009.
doi:10.1587/transcom.E92.B.2550
13. Shahparnia, S. and O. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Trans. on Electromagn. Compat., Vol. 46, No. 4, 580-587, 2004.
doi:10.1109/TEMC.2004.837671
14. Kamgaing, T. and O. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wirel. Compon. Lett., Vol. 13, No. 1, 21-23, 2003.
doi:10.1109/LMWC.2002.807713
15. Chang, C. S., M. P. Houng, D. B. Lin, K. C. Hung, and I. T. Tang, "Simultaneous switching noise mitigation capability with low parasitic e®ect using aperiodic high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 4, 149-158, 2008.
doi:10.2528/PIERL08082902
16. Chang, C. S., J. Y. Li, W. J. Lin, M. P. Houng, L. S. Chen, and D. B. Lin, "Controlling the frequency of simultaneous switching noise suppression by using embedded dielectric resonators in high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 11, 149-158, 2009.
doi:10.2528/PIERL09082406
17. Bait-suwailam, M. M. and O. M. Ramahi, "Simultaneous switching noise mitigation in high-speed circuits using complementary split ring resonators," IET Electron. Lett., Vol. 46, 563-564, 2010.
doi:10.1049/el.2010.0583
18. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Condens. Matter, Vol. 69, 14402, 2004.
doi:10.1103/PhysRevB.69.014402
19. Baena, J. D., J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, "Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines ," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211
20. Marques, , R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and roadside-coupled split ring resonators for metamaterial design. Theory and experiments," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 1, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562
21. Isik, O. and K. P. Esselle, "Backward wave microstrip lines with complementary spiral resonators," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 10, 2008.
doi:10.1109/TAP.2008.929441
22. Falcone, F., T. Lopetegi, J. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029