Vol. 46
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-01-06
Bandwidth Improvement of Reflectarrays Using Single-Layered Double Concentric Circular Ring Elements
By
Progress In Electromagnetics Research C, Vol. 46, 91-99, 2014
Abstract
In an effort to improve the bandwidth of the single layer reflectarray, this paper investigates the use of double concentric circular ring elements arranged in a range of sub-wavelength grids on a single layer of substrate. Compared to the traditional λ/2 grid arrangements, when the radiating elements are arranged in grids less than λ/2, the reflected phase is more uniform over a wider frequency bands when radiating elements' parameters are varied; albeit with a reduced reflected phase range. The double concentric circular ring elements used here also allow an additional degree-of-freedom to improve the bandwidth. A comprehensive investigation on reflectarrays' performance with various grid spacings is conducted and the trade-off between the reflectarray gain and bandwidth is also discussed. Based on the concentric ring element, four offset-fed 0.43 m×0.43 m reflectarrays centered at 10 GHz with various element periodicities, namely λ/2, λ/3, λ/4 and λ/5 grids, are designed and developed. The measured results show that among the four reflectarrays, the one with λ/4 grid spacing achieves the broadest 2-dB gain bandwidth of 33% with an aperture efficiency of 36.2%.
Citation
Lu Guo, Peng Tan, and Tan-Huat Chio, "Bandwidth Improvement of Reflectarrays Using Single-Layered Double Concentric Circular Ring Elements," Progress In Electromagnetics Research C, Vol. 46, 91-99, 2014.
doi:10.2528/PIERC13111108
References

1. Huang, J. and J. A. Encinar, "Reflectarray antennas," John Wiley & Sons, 2008.

2. Li, Q. Y., Y. C. Jiao, and G. Zhao, "A novel microstrip rectangular-patch/ring combination reflectarray element and its application," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1119-1122, 2009.
doi:10.1109/LAWP.2009.2033620

3. Li, R. H., L. Chen, X. T. Gu, and X. W. Shi, "A novel element for broadband reflectarray antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1554{-1563, 2011.
doi:10.1163/156939311797164891

4. Encinar, J. A. and J. A. Zomaza, "Broadband design of three-layer printed reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1662-1664, Jul. 2003.
doi:10.1109/TAP.2003.813611

5. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 10, 1403-1410, Oct. 2001.
doi:10.1109/8.954929

6. Li, Y., M. E. Biakowski, K. H. Sayidmarie, and N. V. Shuley, "81-element single-layer reflectarray with double-ring phasing elements for wideband applications," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2010.
doi:10.1109/APS.2010.5562320

7. Li, Y., K. H. Sayidmarie, and N. V. Shuley, "Single-layer microstrip reflectarray with double elliptical ring elements for bandwidth enhancement," Microwave and Optical Technology Letters, Vol. 53, No. 5, 1083-1087, May 2011.
doi:10.1002/mop.25912

8. Robinson, A. W., M. E. Bialkowski, and H. J. Song, "A passive reflect-array with duaal-feed microstrip patch elements," Microwave and Optical Technology Letters, Vol. 23, No. 5, 295-299, Dec. 1999.
doi:10.1002/(SICI)1098-2760(19991205)23:5<295::AID-MOP11>3.0.CO;2-H

9. Robinson, A. W., M. E. Bialkowski, and H. J. Song, "An 137-element active reflect-array with dual-feed microstrip patch elements," Microwave and Optical Technology Letters, Vol. 26, No. 3, 147-151, Aug. 2000.
doi:10.1002/1098-2760(20000805)26:3<147::AID-MOP3>3.0.CO;2-D

10. Pozar, D. M., "Wideband reflectarrays using artificial impedance surfaces," Electron. Lett., Vol. 43, No. 3, 148-149, Feb. 2007.
doi:10.1049/el:20073560

11. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Bandwidth improvement of reflectarray antennas using closely spaced elements," Progress In Electromagnetics Research C, Vol. 18, 19-29, 2011.

12. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Broadband reflectarray antennas using double-layer sub-wavelength patch elements," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1139-1142, 2010.
doi:10.1109/LAWP.2010.2094178

13. Bialkowski, M. and K. H. Sayidmarie, "Investigations into phase characteristics of a single-layer re°ectarray employing patch or ring elements of variable size," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3366-3372, Nov. 2008.
doi:10.1109/TAP.2008.2005470

14. Bialkowski, M. and K. H. Sayidmarie, "Phasing characteristics of variable size double rings of square or circular shape for design of a single layer microstrip reflectarray," 17th International Conference on Microwave, Radar and Wireless Communications, 1-4, May 2008.

15. Sayidmarie, K. H. and M. Bialkowski, "Investigations into unit cells offering an increased phasing range for single-layer printed reflectarrays," Microwave and Optical Technology Letters, Vol. 50, No. 4, 1028-1032, Apr. 2008.
doi:10.1002/mop.23285

16. Targonski, D. M. Pozar and D. M. Pozar, "Analysis and design of a microstrip reflectarray using patches of variable size," Antennas Propag. Soc. Int. Symp. Dig., 1820-1823, Jun. 1994.