Vol. 46
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-12-19
Robust Sparsity-Based Device-Free Passive Localization in Wireless Networks
By
Progress In Electromagnetics Research C, Vol. 46, 63-73, 2014
Abstract
As an emerging technique with a promising application prospect, the device-free passive localization (DFPL) technique has drawn considerable research efforts due to its ability of realizing wireless localization without the need of carrying any device and participating actively in the localization process. Recent technological achievements of the DFPL technique have made it feasible to realize location estimation using the received signal strength (RSS) information of wireless links. However, one major disadvantage of the RSS-based DFPL technique is that the RSS measurement is too sensitive to noise and environmental variations, which incur the misjudgment of shadowed links and degradation of localization performance. Based on the natural sparsity of location finding in the spatial domain, this paper proposes an environmental-adaptive sparsity-based localization method for the DFPL problem in the existence of model mismatch. The novel feature of this method is to adjust both the overcomplete basis (a.k.a. dictionary) and the sparse solution using a dictionary learning (DL) technology based on the quadratic programming approach so that the location solution can better match the changes of the RSS measurements between the node pairs to the spatial location of the target. Moreover, we propose a modified re-weighting l1 norm minimization algorithm to improve reconstruction performance for sparse signals. The effectiveness of the proposed scheme is demonstrated by experimental results where the proposed algorithm yields substantial improvement for localization performance.
Citation
Wei Ke, Gang Liu, and Tongchangjian Fu, "Robust Sparsity-Based Device-Free Passive Localization in Wireless Networks," Progress In Electromagnetics Research C, Vol. 46, 63-73, 2014.
doi:10.2528/PIERC13101301
References

1. Gonzalo, S. G., A. L. Jose, J. B. David, and L. R. Gustavo, "Challenges in indoor global navigation satellite systems," IEEE Signal Processing Magazine, Vol. 29, No. 2, 108-131, 2012.
doi:10.1109/MSP.2011.943410

2. Lee, J. H., Y. S. Jeong, and S. W. Cho, "Application of the Newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

3. Jamlos, M. F., T. A. Rahman, and M. R. Kamarudin, "A novel adaptive Wi-Fi system with RFID technology," Progress In Electromagnetics Research, Vol. 108, 417-432, 2010.
doi:10.2528/PIER10071904

4. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

5. Liu, H., H. Darabi, H. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions on Systems, Man, and Cybernetics --- Part C, Vol. 37, No. 6, 1067-1080, 2007.
doi:10.1109/TSMCC.2007.905750

6. Mitilineos, S. A., D. M. Kyriazanos, and O. E. Segou, "Indoor localization with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

7. Patwari, N. and J. Wilson, "RF sensor networks for device-free localization: Measurements, models, and algorithms," Proceeding of the IEEE, Vol. 98, No. 11, 1961-1973, 2010.
doi:10.1109/JPROC.2010.2052010

8. Youssef, M., M. Mah, and A. Agrawala, "Challenges: Device-free passive localization for wireless environments," 13th ACM MobiCom, 222-229, 2007.

9. Wilson, J. and N. Patwari, "Radio tomographic imaging with wireless networks," IEEE Transactions on Mobile Computing, Vol. 9, No. 5, 621-632, 2010.
doi:10.1109/TMC.2009.174

10. Wilson, J. and N. Patwari, "See through walls: Motion tracking using variance-based radio tomography networks," IEEE Transactions on Mobile Computing, Vol. 10, No. 5, 612-621, 2011.
doi:10.1109/TMC.2010.175

11. Wilson, J. and N. Patwari, "A fade-level skew-Laplace signal strength model for device-free localization with wireless networks," IEEE Transactions on Mobile Computing, Vol. 11, No. 6, 947-957, 2012.
doi:10.1109/TMC.2011.102

12. Moussa, M. and M. Youssef, "Smart devices for smart environments: Device-free passive detection in real environments," 7th IEEE PerCom, 1-6, 2009.

13. Zhang, D., Y. Liu, X. Guo, and L. M. Ni, "RASS: A real-time, accurate and scalable system for tracking transceiver-free objects," IEEE Transactions on Mobile Computing, Vol. 24, No. 5, 996-1008, 2013.

14. Chen, X., A. Edelstein, Y. Li, M. Coates, M. Rabbat, and A. Men, "Sequential Monte Carlo for simultaneous passive device-free tracking and sensor localization using received signal strength measurements," 10th ACM/IEEE IPSN, 342-353, 2011.

15. Kanso, M. A. and M. G. Rabbat, "Compressed RF tomography for wireless sensor networks: Centralized and decentralized approaches," 5th DCOSS, 173-186, 2009.

16. Song, H., T. Liu, X. Luo, and A. Agrawala, "Feedback based sparse recovery for motion tracking in RF sensor networks," 6th IEEE ICNAS, 203-207, 2011.

17. Wang, J., Q. Gao, X. Zhang, and H. Wang, "Device-free localization with wireless networks based on compressing sensing," IET Communications, Vol. 6, No. 15, 2395-2403, 2012.
doi:10.1049/iet-com.2011.0603

18. Patwari, N. and J. Wilson, "Spatial model for human motion-induced signal strength variance on static links," IEEE Transactions on Information and Security, Vol. 6, No. 3, 791-802, 2011.
doi:10.1109/TIFS.2011.2146774

19. Agrawal, P. and N. Patwari, "Correlated link shadow fading in multi-hop wireless networks," IEEE Transactions on Wireless Communications, Vol. 8, No. 8, 4024-4036, 2009.
doi:10.1109/TWC.2009.071293

20. Patwari, N. and P. Agrawal, "Effects of correlated shadowing: Connectivity, localization, and RF tomography," 2008 ICIPSN, 82-93, 2008.

21. Rubinstein, R., A. M. Bruckstein, and M. Elad, "Dictionaries for sparse representation modeling," Proceeding of the IEEE, Vol. 98, No. 6, 1045-1057, 2010.
doi:10.1109/JPROC.2010.2040551

22. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Review, Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X

23. Tropp, J. and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

24. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis Application, Vol. 14, No. 5--6, 877-905, 2008.
doi:10.1007/s00041-008-9045-x

25. Antoniou, A. and W.-S. Lu, "Practical Optimization: Algorithms and Engineering Applications," Springer, 2006.

26. Dattorro, J., Convex Optimization and Euclidean Distance Geometry, Meboo Publishing, , 2005.