1. Belot, D., "Millimeter-wave design in silicon technologies," Silicon Integrated Circuits in RF Systems, 232-238, 2010.
2. Prasad, M., A. S. Gaur, V. K. Sharma, and N. P. Pathak, "Dispersion and attenuation characteristics of suspended microstrip line on multilayer lossy silicon substrate at 60 GHz," International Conference on Infrared, Millimeter and THz Waves (2008), 1-2, 2008.
doi:10.1109/ICIMW.2008.4665716
3. Makita, T., I. Tamai, and S. Seki, "Coplanar waveguides on high-resistivity silicon substrates with attenuation constant lower than 1dB/mm for microwave and millimeter-wave bands," IEEE Trans. on Electron Devices, Vol. 58, No. 3, Mar. 2011.
doi:10.1109/TED.2010.2098878
4. Mat, D. A. A., R. K. Pokharel, R. Sapawi, H. Kanaya, and K. Yoshida, "Low-loss 60 GHz patterned ground shield CPW transmission line," IEEE TENCON, 1118-1121, 2011.
5. Pizarro, F., R. Pascaud, O. Pascal, T. Callegari, and L. Liard, "Experimental study of RF/microplasma interaction using an inverted microstrip line," European Conference on Antennas and Propagation, 1187-1190, 2013.
6. Pucci, E., A. U. Zaman, E. Rajo-Iglesias, and P-S. Kildal, "New loss loss inverted microstrip line using gap waveguide technology for slot antenna applications," European Conference on Antennas and Propagation, 979-982, 2011.
7. San, H., Y. Li, Z. Song, Y. Yu, and X. Chen, "Self-packaging fabrication of silicon-glass-based piezoresistive pressure sensor," IEEE Electron Devices Letters, Vol. 34, No. 6, 789-791, Jun. 2013.
doi:10.1109/LED.2013.2258320
8. Martoglio wideband 3D-transition between coplanar and inverted microstrip on silicon to characterize a line in MEMS technology, L., E. Richalot, G. Lissorgues, and O. Picon, "A ," Microwave and Optical Technology Letters, Vol. 46, No. 4, 378-381, Aug. 20, 2005.
9. Emond, J., M. Grzeskowiak, G. Lissorgues, S. Protat, F. Deshours, E. Richalot, and O. Picon, "A low planar Goubau line and a coplanar-PGL transition on high resistivity silicon substrate in the 57-64 GHz band," Microwave and Optical Technological Letters, Vol. 54, No. 1, 164-168, Jan. 2012.
doi:10.1002/mop.26470
10. Xu, Y. S. and R. G. Bosisio, "A study of planar Goubau lines (PGLS) for millimeter-and-submillimeter-wave integrated circuits (ICS)," Microwave and Optical Technological Letters, Vol. 43, No. 4, 290-293, Nov. 2004.
doi:10.1002/mop.20448
11. Laurette, S., A. Treizebre, and B. Bocquet, "Corrugated Goubau lines to slow down and confine THz waves," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 3, May 2012.
doi:10.1109/TTHZ.2012.2189207
12. Treizebre, A., M. Hofman, and B. Bocquet, "Terahertz spiral planar Goubau line rejectors for biological characterization," Progress In Electromagnetics Research M, Vol. 14, 163-176, 2010.
doi:10.2528/PIERM10072110
13. Laurette, S., A. Treizebre, N.-E. Bourzgui, and B. Bocquet, "Terahertz interferometer Goubau-line waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 49-58, 2012.
doi:10.2528/PIERL11121205
14. Xu, Y. S., C. Nerguizian, and R. G. Bosisio, "Wideband planar Goubau line integrated circuit components at millimeter waves," IET Microwave Antennas Propagation, Vol. 5, No. 8, 882-885, Jun. 2011.
doi:10.1049/iet-map.2010.0025
15. Treizebre, A., S. Laurette, Y. Xu, R. G. Bosisio, and B. Bocquet, "THz power divider circuits on planar Goubau lines (PGLs)," Progress In Electromagnetics Research C, Vol. 26, 219-228, 2012.
doi:10.2528/PIERC11112409
16. Karim, M. K., M. Sun, L. C. Ong, and Y. X. Guo, "SiP-based 60 GHz transmitter in LTCC," IEEE International Symposium on Radio-frequency Integration Technology (RFIT), 13-15, Nov. 2012.
17. Cao, Z., C. M. Okonkwo, H. P. A. van den Boom, B. Yang, S. Zou, M. Huang, E. Tangdiongga, and A. M. J. Koonen, "Simple and low cost remote-up conversion scheme using only one optical modulator and its application in a 60 GHz radio-over-fiber system," European Conference on Networks and Optical Communications (NOC), 1-4, 2012.