Vol. 41
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-07-09
A Homogenous Reference Cells Selector for CFAR Detector in Highly Heterogeneous Environment
By
Progress In Electromagnetics Research C, Vol. 41, 175-188, 2013
Abstract
This paper considers the radar scenes which contain numerous rapidly changing terrains, i.e., there are more than one clutter-edge in the environment. This kind of radar scenes incurs sharply degradation in the performance of the present adaptive constant false alarm rate (CFAR) detectors as the statistical characteristic of reference cells is highly heterogeneous. To solve this problem, we propose a homogenous reference cells selector to improve the performance of CFAR detector in highly heterogeneous environment. The selector is comprised of an M-N clutter-edge detector cascading a terrain classifier. The M-N clutter-edge detector is used to obtain multiple clutter-edges in heterogeneous environment. With the detected clutter-edges, the terrain classifier is derived to obtain identical distributed range cells. Based on the selector, a modified Log-t-CFAR detector is suggested. Finally, the performance of the proposed selector and CFAR detector is evaluated by measured data and computer simulation.
Citation
Lingjiang Kong, Xin Yi Peng, and Tianxian Zhang, "A Homogenous Reference Cells Selector for CFAR Detector in Highly Heterogeneous Environment," Progress In Electromagnetics Research C, Vol. 41, 175-188, 2013.
doi:10.2528/PIERC13052604
References

1. Richards, M. A., Fundamentals of Statistical Signal Processing, McGraw-Hill, New York, 2008.

2. Magaz, B., A. Belouchrani, and M. Hamadouche, "Automatic threshold selection in OS-CFAR radar detection using information theoretic criteria," Progress In Electromagnetics Research B, Vol. 30, 157-175, 2011.

3. Habib, M. A., M. Barkat, B. Aissa, and T. A. Denidni, "CA-CFAR detection performance of radar targets embedded in `non centered chi-2 Gamma' clutter," Progress In Electromagnetics Research, Vol. 88, 135-148, 2008.
doi:10.2528/PIER08092203

4. Liu, N. N., J. Li, and Y. Cui, "A new detection algorithm based on CFAR for radar image with homogeneous background," Progress In Electromagnetics Research C, Vol. 15, 13-22, 2010.
doi:10.2528/PIERC10061201

5. Magaz, B., A. Belouchrani, and M. Hamadouche, "A new adaptive linear combined CFAR detector in presence of interfering targets," Progress In Electromagnetics Research B, Vol. 34, 367-387, 2011.

6. Hao, C., F. Bandiera, and J. Yang, "Adaptive detection of multiple point-like targets under conic constraints," Progress In Electromagnetics Research, Vol. 129, 231-250, 2012.

7. Liu, B. and W. Chang, "A novel range-spread target detection approach for frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012.

8. Erfanian, S. and V. T. Vakili, "Introducing excision switching-CFAR in K distributed sea clutter," Signal Processing, Vol. 89, No. 6, 1023-1031, 2009.
doi:10.1016/j.sigpro.2008.12.001

9. Zhang, R. L., W. X. Sheng, and X. F. Ma, "Improved switching CFAR detector for non-homogeneous environments," Signal Processing, Vol. 93, No. 1, 35-48, 2013.
doi:10.1016/j.sigpro.2012.06.015

10. Hong, S. W. and D. S. Han, "Performance analysis of OS-CFAR with binary integration for Weibull background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, 1357-1366, 2013.
doi:10.1109/TAES.2013.6494420

11. Ghobadzadeh, A., A. Pourmottaghi, and M. R. Taban, "Clutter-edge detection and estimation of field parameters in radar detection," Electrical Engineering (ICEE) Conference, 1-6, 2011.

12. Chen, B., P. K. Varshney, and J. H. Michels, "Adaptive CFAR detection for clutter-edge heterogeneity using Bayesian inference," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 4, 1462-1470, 2003.
doi:10.1109/TAES.2003.1261145

13. Pourmottaghi, A., M. R. Taban, and S. Gazor, "A CFAR detector in a nonhomogenous Weibull clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1747-1758, 2012.
doi:10.1109/TAES.2012.6178094

14. Owolawi, P. A., "Rainfall rate probability density evaluation and mapping for the estimation of rain attenuation in South Africa and surrounding islands," Progress In Electromagnetics Research, Vol. 112, 155-181, 2011.

15. Ravid, R., P. K. Varshney, and J. H. Michels, "Optimal CFAR detection in Weibull clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 1, 52-64, 1995.
doi:10.1109/7.366292

16. Goldstein, G. B., "False-alarm regulation in log-normal and Weibull clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 9, No. 1, 84-92, 1973.
doi:10.1109/TAES.1973.309705

17. "Moving and stationary target acquisition and recognition (MS-TAR),", DARPA/AFRL, Database website: https://www.sdms.afrl.af.mil/datasets/mstar/.

18. Drosopoulos, A., "Description of theOHGR database,", Tech. Note No. 94-14, Defence Research Establishment Ottawa, 1994, Data-base website: http://soma.crl.mcmaster.ca/ipix/dartmouth/index.htm.

19. Skolnik, M. I., Introduction to Radar Systems, McGraw-Hill, New York, 2001.