Vol. 42
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-07-15
Integrated Bluetooth/IMT-E and UWB Planar Antenna Using Scrlh Resonator to Reject WLAN and WiMAX Interferences
By
Progress In Electromagnetics Research C, Vol. 42, 39-53, 2013
Abstract
A novel printed monopole antenna covering 2.4-2.484 GHz (Bluetooth), 2.5-2.69 GHz (IMT-E) and 3.1-10.6 GHz (UWB) frequency bands is presented. The entire frequency bands are obtained by a modified U-shaped radiator and a modified ground plane. To prevent possible interference between UWB systems and other existing wireless systems such as WLAN and WiMAX, a SCRLH resonator structure is placed next to the feed line. Characteristics of the Bluetooth and IMT-E bands are further enhanced by two quarter-wavelength strips added on each side of the radiator. The proposed antenna can be easily printed on a 1.6-mm-thick FR4 substrate with dimensions of 30 × 41 mm2. Simulation and experimental results show that the antenna yields an impedance bandwidth of 2.3-2.8 and 3-12 GHz with -10 dB reflection coefficient, except for the dual notched bands of 3.2-3.6 for WiMAX and 4.9-6.1 GHz for WLAN. The electrical characteristics in frequency and time domain show suitability of this antenna for use in UWB systems.
Citation
Hoang The Viet, Quyet Nguyen-Manh, Dong Hyun Lee, and Hyun Chang Park, "Integrated Bluetooth/IMT-E and UWB Planar Antenna Using Scrlh Resonator to Reject WLAN and WiMAX Interferences," Progress In Electromagnetics Research C, Vol. 42, 39-53, 2013.
doi:10.2528/PIERC13052002
References

1. First Report and Order in the Matter of Revision of Part 15 of the Commission Rules Regarding Ultra-wideband Transmission System, Released by Federal Communications Commission (FCC), , ET-Docket 98-153, 2002.
doi:10.2528/PIER11101104

2. Zhou, D., S. Gao, F. Zhu, R. A. Abd-Alhameed, and J. D. Xu, "A simple and compact planar ultra wide-band antenna with single or dual band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 47-65, 2012.
doi:10.2528/PIER12033105

3. Zhu, F., S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J. Xu, "Design and analysis of planar ultra-wide band antenna with dual band notched function," Progress In Electromagnetics Research, Vol. 127, 523-536, 2012.

4. Ghatak, R., B. Biswas, A. Karmakar, and D. R. Poddar, "A circular fractal UWB antenna based on descartes circle theorem with band rejection capability," Progress In Electromagnetics Research C, Vol. 37, 235-248, 2013.
doi:10.1002/mop.25872

5. Nguyen, D. T., D. H. Lee, and H. C. Park, "Small planar coplanar-waveguide-fed dual band-notched monopole ultra-wideband antenna," Microwave Opt. Technol. Lett., Vol. 53, No. 4, 920-924, 2011.
doi:10.1109/LAWP.2012.2192900

6. Nguyen, D. T., D. H. Lee, and H. C. Park, "Very compact printed triple band-notched UWB antenna with quarter-wavelength slots," IEEE Antennas Wireless Propag. Lett., Vol. 11, 411-414, 2012.

7. Wu, Z. H., F. Wei, X. W. Shi, and W. T. Li, "A compact quad band-notched UWB monopole antenna loaded one lateral L-shaped slot," Progress In Electromagnetics Research, Vol. 139, 303-315, 2013.
doi:10.1002/mop.25963

8. Djaiz, A., M. Nedil, M. A. Habib, and T. A. Denidni, "Design of a new UWB-integrated antenna filter with a rejected WLAN band at 5.8 GHz," Microwave Opt. Technol. Lett., Vol. 53, No. 6, 1298-1302, 2011.
doi:10.1002/mop.26380

9. Panda, J. R. and R. S. Kshetrimayum, "A 3.4/5.5 dual-band notched UWB printed monopole antenna with two open-circuited stubs in the microstrip feedline," Microwave Opt. Technol. Lett., Vol. 53, No. 12, 2973-2978, 2011.

10. Son, T. V. and D. N. Chien, "Dual band-notched UWB antenna based on electromagnetic band gap structures," REV Journal on Electronics and Communications, Vol. 1, 130-136, 2011.

11. Peng, L. and C. Ruan, "Design and time-domain analysis of compact multi-band-notched UWB antennas with EBG structures," Progress In Electromagnetics Research B, Vol. 47, 339-357, 2013.

12. Liu, X., Y. Yin, P. Liu, J. Wang, and B. Xu, "A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches," Progress In Electromagnetics Research, Vol. 136, 623-634, 2013.
doi:10.2528/PIERL11070306

13. Ren, F. C., F. S. Zang, J. H. Bao, Y. C. Jiao, and L. Zhou, "Printed Bluetooth and UWB antenna with dual band-notched functions," Progress In Electromagnetics Research Letters, Vol. 26, 39-48, 2011.
doi:10.1002/mop.24222

14. Dong, Y., W. Hong, L. Liu, Y. Zhang, and Z. Kuai, "Performance analysis of a printed super-wideband antenna," Microwave Opt. Technol. Lett., Vol. 51, No. 4, 949-956, 2009.

15. Li, G., H. Zhai, T. Li, X. Ma, and C. Liang, "Design of a compact UWB antenna integrated with GSM/WCDMA/WLAN bands," Progress In Electromagnetics Research, Vol. 136, 409-419, 2013.
doi:10.1109/LAWP.2009.2013371

16. Yildirim, B. S., B. A. Cetiner, G. Roqueta, and L. Jofre, "Intergrated Bluetooth and UWB antenna," IEEE Antennas Wireless Propag. Lett., Vol. 8, 149-152, 2009.

17. Hu, C. L., D. L. Huang, H. L. Kuo, C. F. Yang, C. L. Liao, and S. T. Lin, "Compact multibranch inverted-F antenna to be embedded in a laptop computer for LTE/WWAN/IMT-E applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 834-841, 2009.
doi:10.1109/TAP.2006.889823

18. Chen, Z. N., T. S. P. See, and X. Qing, "Small printed ultrawideband antenna with reduced ground plane effect," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 383-388, 2007.
doi:10.1049/el:20083095

19. Chu, Q. X. and Y. Y. Yang, "3.5/5.5 GHz dual band-notch ultra-wideband antenna," Electron. Lett., Vol. 44, No. 3, 172-174, 2008.
doi:10.1002/mop.23789

20. Han, W. and Y. Feng, "Ultra-wideband bandpass filter using simplified left-handed transmission line structure," Microwave Opt. Technol. Lett., Vol. 50, No. 11, 2758-2762, 2008.
doi:10.1002/mop.24808

21. Gong, J. Q. and Q. X. Chu, "Miniaturized microstrip bandpass filter using coupled SCRLH zeroth-order resonators," Microwave Opt. Technol. Lett., Vol. 51, No. 12, 2985-2989, 2009.
doi:10.1109/LMWC.2010.2088113

22. Wei, F., Q. Y. Wu, X. W. Shi, and L. Chen, "Compact UWB bandpass filter with dual notched bands based on SCRLH resonator," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 1, 28-30, 2011.
doi:10.1109/TAP.2011.2163785

23. Elmansouri, M. A. and D. S. Filipovic, "Pulse distortion and mitigation thereof in spiral antenna-based UWB communication systems," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3863-3871, 2011.
doi:10.2528/PIER11103003

24. Lizzi, L., G. Oliveri, and A. Massa, "A time-domain approach to the synthesis of UWB antenna systems," Progress In Electromagnetics Research, Vol. 122, 557-575, 2012.