Vol. 40
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-05-21
Direction Estimation of Correlated/Coherent Signals by Sparsely Representing the Signal-Subspace Eigenvectors
By
Progress In Electromagnetics Research C, Vol. 40, 37-52, 2013
Abstract
This paper addresses the problem of direction-of-arrival (DOA) estimation of correlated and coherent signals, and two sparsity-inducing methods are proposed. In the first method named L1-EVD, the signal-subspace eigenvectors are represented jointly with well-chosen hard thresholds attached to the representation residue of each eigenvector. Then only the eigenvector corresponding to the largest eigenvalue is reserved for DOA estimation via sparse representation, which aims at highly correlated signals, and a method named L1-TEVD (TEVD: Truncated EVD) is proposed. Simulation results show that, L1-EVD and L1-TEVD both surpass L1-SVD in DOA estimation performance and computation efficiency for highly correlated and coherent signals.
Citation
Zhi-Chao Sha, Zhangmeng Liu, Zhitao Huang, and Yiyu Zhou, "Direction Estimation of Correlated/Coherent Signals by Sparsely Representing the Signal-Subspace Eigenvectors," Progress In Electromagnetics Research C, Vol. 40, 37-52, 2013.
doi:10.2528/PIERC13040908
References

1. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

2. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

3. Mukhopadhyay, M., B. K. Sarkar, and A. Chakrabort, "Augmentation of anti-jam GPS system using smart antenna with a simple DOA estimation algorithm," Progress In Electromagnetics Research, Vol. 67, 231-249, 2007.
doi:10.2528/PIER06090504

4. Tu, T. C., C. M. Li, and C. C. Chiu, "The performance of polarization diversity schemes in outdoor micro cells," Progress In Electromagnetics Research, Vol. 55, 175-188, 2005.
doi:10.2528/PIER04122901

5. Cheng, S. C. and K. C. Lee, "Reducing the array size for DOA estimation by an antenna mode switch technique," Progress In Electromagnetics Research, Vol. 131, 117-134, 2010.

6. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated Boolean PSO," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
doi:10.2528/PIER12022806

7. Liu, F., J. Wang, R. Du, L. Peng, and P. Chen, "A second-order cone programming approach for robust downlink beamforming with power control in cognitive radio networks," Progress In Electromagnetics Research M, Vol. 18, 221-231, 2011.

8. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205

8. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Mag., 67-94, Jul. 1996.

10. Si, W., L. Wan, L. Liu, and Z. Tian, "Fast estimation of frequency and 2-D DOAs for cylindrical conformal array antenna using state-space and propagator method," Progress In Electromagnetics Research, Vol. 137, 51-71, 2013.

11. Weiss, A. J. and B. Friedlander, "On the Cramer-Rao bound for direction finding of correlated signals," IEEE Trans. Signal Processing, Vol. 41, No. 1, 495-499, Jan. 1993.
doi:10.1109/TSP.1993.193187

12. Linebarger, D. A., R. D. DeGroat, and E. M. Dowling, "Efficient direction-finding methods employing forward/backward averaging," IEEE Trans. Signal Processing, Vol. 42, No. 8, 2136-2145, Aug. 1994.
doi:10.1109/78.301848

13. Malioutov, D., "A sparse signal reconstruction perspective for source localization with sensor arrays,", M. S. Thesis, MIT, Cambridge, MA, Jul. 2003.

14. Fuchs, J. J., "On the application of the global matched filter to DOA estimation with uniform circular arrays," IEEE Trans. Signal Processing, Vol. 49, No. 4, 702-709, Apr. 2001.
doi:10.1109/78.912914

15. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Processing, Vol. 53, No. 8, 3010-3022, Aug. 2005.
doi:10.1109/TSP.2005.850882

16. Liu, F., L. Peng, M. Wei, and S. Guo, "An improved L1-SVD algorithm based on noise subspace for DOA estimation," Progress In Electromagnetics Research C, Vol. 29, 109-122, May 2012.

17. Hyder, M. M. and K. Mahata, "Direction-of-arrival estimation using a mixed L2,0 norm approximation," IEEE Trans. Signal Processing, Vol. 58, No. 9, 4646-4655, Sep. 2010.
doi:10.1109/TSP.2010.2050477

18. Liu, Z. M., Z. T. Huang, and Y. Y. Zhou, "Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation," IEEE Trans. Signal Processing, Vol. 59, No. 9, 4256-4270, Sep. 2011.
doi:10.1109/TSP.2011.2159214

19. Zhang, Y., Q. Wan, and A.-M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
doi:10.2528/PIER08090703

20. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic," Progress In Electromagnetics Research, Vol. 43, No. 1, 129-159, 2001.

21. Berg, E. and M. P. Friedlander, "In pursuit of a root,", Technique Report, University of British Columbia, BC, Canada, Tech. Rep. TR-2007-19, 1-8, 2007.

22. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115

23. Natarajan, B. K., "Sparse approximate solutions to linear systems," SIAM J. Comput., Vol. 24, 227-234, 1995.
doi:10.1137/S0097539792240406

24. Kaveh, M. and A. J. Barabell, "The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 34, No. 2, 331-341, Apr. 1986.
doi:10.1109/TASSP.1986.1164815

25. Brillinger, D. R., Time Series: Data Analysis and Theory, SIAM Press, 2001.
doi:10.1137/1.9780898719246

26. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proceedings of the IEEE, Vol. 98, No. 6, 948-958, Jun. 2010.
doi:10.1109/JPROC.2010.2044010

27. Zhang, Y., Q. Wan, H. P. Zhao, and W. L. Yang, "Support vector regression for basis selection in Laplacian noise environment," IEEE Signal Processing Letters, Vol. 14, No. 11, 871-874, Nov. 2007.
doi:10.1109/LSP.2007.901700

28. Zhang, Y., H. Zhao, and Q. Wan, "Single snapshot 2D-DOA estimation in impulsive noise environment using linear arrays," ACES Journal, Vol. 27, No. 2, 991-998, Dec. 2012.