Vol. 38
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-03-28
W-L1-Sracv Algorithm for Direction-of-Arrival Estimation
By
Progress In Electromagnetics Research C, Vol. 38, 165-176, 2013
Abstract
This paper presents an effective weighted-L1-sparse representation of array covariance vectors (W-L1-SRACV) algorithm which exploits compressed sensing theory for direction-of-arrival (DOA) estimation of multiple narrow-band sources impinging on the far field of a uniform linear array (ULA). Based on the sparse representation of array covariance vectors, a weighted L1-norm minimization is applied to the data model, in which the weighted vector can be obtained by taking advantage of the orthogonality between the noise subspace and the signal subspace. By searching the sparsest coe±cients of the array covariance vectors simultaneously, DOAs can be effectively estimated. Compared with the previous works, the proposed method not only has a super-resolution but also improves the robustness in low SNR cases. Furthermore, it can effectively suppresses spurious peaks which will disturb the correct judgment of real signal peak in the signal recovery processing. Simulation results are shown to demonstrate the efficacy of the presented algorithm.
Citation
Ruiyan Du, Fulai Liu, and Lu Peng, "W-L1-Sracv Algorithm for Direction-of-Arrival Estimation," Progress In Electromagnetics Research C, Vol. 38, 165-176, 2013.
doi:10.2528/PIERC13022407
References

1. Liu, F. L., J. K. Wang, C. Y. Sun, and R. Y. Du, "Robust MVDR beamformer for nulling level control via multi-parametric quadratic programming," Progress In Electromagnetics Research C, Vol. 20, 239-254, 2011.

2. Bencheikh, M. L. and Y. Wang, "Combined ESPRIT-root music for DOA-DOD estimation in polarimetric bistatic MIMO radar," Progress In Electromagnetics Research Letter, Vol. 22, 109-117, 2011.
doi:10.2528/PIERC11050205

3. Johnson, D. H. and D. E. Dudgeon, Array Signal Processing-concepts and Techniques, Prentice-Hall, Englewood Cliffs, NJ, 1993.

4. Liu, F. L., J. K. Wang, R. Y. Du, L. Peng, and P. P. Chen, "A second-order cone programming approach for robust downlink beamforming with power control in cognitive radio networks," Progress In Electromagnetics Research M, Vol. 18, 221-231, 2011.

5. Capon, J., "High resolution frequency-wavenumber spectrum analysis," Proc. IEEE, Vol. 57, No. 8, 1408-1418, Aug. 1969.
doi:10.1109/PROC.1969.7278

6. Liu, F. L., J. K. Wang, C. Y. Sun, and R. Y. Du, "Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2052-2062, 2012.
doi:10.1109/TAP.2012.2186216

7. Anthony, J. W. and G. Motti, "Direction finding using esprit with interpolated arrays," IEEE Transactions on Signal Processing, Vol. 39, No. 6, 1473-1478, 1991.
doi:10.1109/78.136564

8. Viberg, M. and B. Ottersten, "Sensor array processing based on subspace fitting," IEEE Transactions on Signal Processing, Vol. 39, 1110-1120, 1991.
doi:10.1109/78.80966

9. yder, M. and K. Mahata, "An improved smoothed L0 approximation algorithm for sparse representation," IEEE Transactions on Signal Processing, Vol. 58, 2194-2205, 2010.

10. Gorodnitsky, I. F. and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Transactions on Signal Processing, Vol. 45, No. 3, 600-616, Mar. 1997.
doi:10.1109/78.558475

11. Cotter, S., "Multiple snapshot matching pursuit for direction of arrival (DOA) estimation," Proceedings of the European Signal Processing Conference, 247-251, Poznan, Poland, September 3-7, 2007.

12. Hyder, M. M. and K. Mahata, "Direction-of-arrival estimation using a mixed L2,0 norm approximation," IEEE Transactions on Signal Processing, Vol. 58, 4646-4655, 2010.
doi:10.1109/TSP.2010.2050477

13. Malioutov, D. M., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Transactions on Signal Processing, Vol. 53, No. 8, 3010-3022, Aug. 2005.
doi:10.1109/TSP.2005.850882

14. Yin, J. H. and T. Q. Chen, "Direction-of-arrival estimation using a sparse representation of array covariance vectors," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4489-4493, Sept. 2011.
doi:10.1109/TSP.2011.2158425

15. Donoho, D., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

16. Fuchs, J. J., "On the application of the global matched filter to DOA estimation with uniform circular arrays," IEEE Transactions on Signal Processing, Vol. 49, No. 4, 702-709, Apr. 2001.
doi:10.1109/78.912914

17. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted L1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, No. 5-6, 877-905, Dec. 2008.
doi:10.1007/s00041-008-9045-x